Chiral phosphoric acid catalyzed oxidative kinetic resolution of cyclic secondary amine derivatives including tetrahydroquinolines by hydrogen transfer to imines
structural and mechanistic studies on the organocatalytic asymmetrictransferhydrogenation of ketimines with trichlorosilane. Amines were obtained in good yields and moderate enantioselectivities. Both experiment and computation were utilized to provide an improved understanding of the mechanism. amines - Lewis bases - organocatalysis - transferhydrogenation - trichlorosilane
Antioxidant for polyester fluids - alpha - methyl - n
申请人:Uniroyal Chemical Company, Inc.
公开号:US04962234A1
公开(公告)日:1990-10-09
An antioxidant for lubricating oils comprising an amine compound selected from substituted benzylamines or a substituted 1-amino-1,2,3,4-tetrahydro-naphthalene. The preferred anti-oxidants are N-(alpha -methyl -p -octylbenzyl) aniline, N-(alpha-methylbenzyl)- p -nonylaniline or 1-( p -dodecylanilino)-1,2,3,4-tetrahydronaphthalene.
coupled with aryl bromides in the presence of an iron catalyst, metallic magnesium, a diamine ligand and an organic dihalide oxidant at 0 °C. The use of a 1:1 mixture of tetrahydrofuran and 1,4‐dioxane is essential for this CH bond activation reaction. The reaction has wider scope of the substrate compared with the reaction using a separately prepared Grignard reagent, and proceeds with lower catalyst
Levulinic acid (LA) is transformed into pyrrolidinones via iridium-catalysed reductive amination using formic acid as the hydrogen source under aqueous conditions. The catalytic system is the most active and performs under the mildest conditions ever reported for the reductive amination of LA.
An iridiumcatalyst enables the reductive amination of carbonylgroups with unprecedented substrate scope, selectivity, and activity using formic acid as the hydrogen source (see scheme). The catalyst system provides significant improvement over commonly used boron hydrides.