摘要:
A Ni(II)-based dimer structure, Ni-2(dpa)(2)(pyz)(H2O)(4) (dpa = 2,6-pyridine dicarboxylic acid dianion, pyz: pyrazine), has been prepared using hydrothermal synthesis and the solid-state magnetic properties have been evaluated. In the dimeric structure, the planar tridentate 2,6-pyridine dicarboxylic acid dianion coordinates to a Ni(II) ion in a meridional fashion and defines the equatorial plane of the complex. The fourth equatorial coordination site is then occupied by a pyrazine molecule that functions as a linear bidentate ligand bridging two Ni(II) complexes to form a dimer. The axial positions of each Ni(11) complex are occupied by two water molecules to form a distorted octahedral geometry. Susceptibility and magnetization measurements show that both intra-dimer and inter-dimer exchange interactions are weakly antiferromagnetic. The fitting of the magnetic data also indicates the existence of a large axial zero-field splitting term that contributes to the small magnetization even under high fields. (C) 2011 Elsevier Ltd. All rights reserved.