摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2,7-Bis(methoxycarbonyl)-1,8-naphthyridine | 125902-21-8

中文名称
——
中文别名
——
英文名称
2,7-Bis(methoxycarbonyl)-1,8-naphthyridine
英文别名
dimethyl 1,8-naphthyridine-2,7-dicarboxylate
2,7-Bis(methoxycarbonyl)-1,8-naphthyridine化学式
CAS
125902-21-8
化学式
C12H10N2O4
mdl
——
分子量
246.222
InChiKey
WLVSTBFFNVAEAD-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.8
  • 重原子数:
    18
  • 可旋转键数:
    4
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.17
  • 拓扑面积:
    78.4
  • 氢给体数:
    0
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2,7-Bis(methoxycarbonyl)-1,8-naphthyridine 在 hydrazine hydrate 作用下, 以 乙醇 为溶剂, 反应 36.0h, 生成 N'2,N'7-bis(quinolin-4-ylmethylene)-1,8-naphthyridine-2,7-dicarbohydrazide
    参考文献:
    名称:
    Novel cationic bis(acylhydrazones) as modulators of Epstein–Barr virus immune evasion acting through disruption of interaction between nucleolin and G-quadruplexes of EBNA1 mRNA
    摘要:
    The oncogenic Epstein-Barr virus (EBV) evades the immune system through limiting the expression of its highly antigenic and essential genome maintenance protein, EBNA1, to the minimal level to ensure viral genome replication, thereby also minimizing the production of EBNA1-derived antigenic peptides. This regulation is based on inhibition of translation of the virally-encoded EBNA1 mRNA, and involves the interaction of host protein nucleolin (NCL) with G-quadruplex (G4) structures that form in the glycine-alanine repeat (GAr)-encoding sequence of the EBNA1 mRNA. Ligands that bind to these G4-RNA can prevent their interaction with NCL, leading to disinhibition of EBNA1 expression and antigen presentation, thereby interfering with the immune evasion of EBNA1 and therefore of EBV (M.J. Lista et al., Nature Commun., 2017, 8, 16043). In this work, we synthesized and studied a series of 20 cationic bis(acylhydrazone) derivatives designed as G4 ligands. The in vitro evaluation showed that most derivatives based on central pyridine (Py), naphthyridine (Naph) or phenanthroline (Phen) units were efficient G4 binders, in contrast to their pyrimidine (Pym) counterparts, which were poor G4 binders due to a significantly different molecular geometry. The influence of lateral heterocyclic units (N-substituted pyridinium or quinolinium residues) on G4-binding properties was also investigated. Two novel compounds, namely PyDH2 and PhenDH2, used at a 5 μM concentration, were able to significantly enhance EBNA1 expression in H1299 cells in a GAr-dependent manner, while being significantly less toxic than the prototype drug PhenDC3 (GI50 > 50 μM). Antigen presentation, RNA pull-down and proximity ligation assays confirmed that the effect of both drugs was related to the disruption of NCL-EBNA1 mRNA interaction and the subsequent promotion of GAr-restricted antigen presentation. Our work provides a novel modular scaffold for the development of G-quadruplex-targeting drugs acting through interference with G4-protein interaction.
    DOI:
    10.1016/j.ejmech.2019.05.042
  • 作为产物:
    参考文献:
    名称:
    Functionalization of 2-methyl- and 2,7-dimethyl-1,8-naphthyridine
    摘要:
    DOI:
    10.1021/jo00296a051
点击查看最新优质反应信息

文献信息

  • Novel cationic bis(acylhydrazones) as modulators of Epstein–Barr virus immune evasion acting through disruption of interaction between nucleolin and G-quadruplexes of EBNA1 mRNA
    作者:Oksana Reznichenko、Alicia Quillévéré、Rodrigo Prado Martins、Nadège Loaëc、Hang Kang、María José Lista、Claire Beauvineau、Jorge González-García、Régis Guillot、Cécile Voisset、Chrysoula Daskalogianni、Robin Fåhraeus、Marie-Paule Teulade-Fichou、Marc Blondel、Anton Granzhan
    DOI:10.1016/j.ejmech.2019.05.042
    日期:2019.9
    The oncogenic Epstein-Barr virus (EBV) evades the immune system through limiting the expression of its highly antigenic and essential genome maintenance protein, EBNA1, to the minimal level to ensure viral genome replication, thereby also minimizing the production of EBNA1-derived antigenic peptides. This regulation is based on inhibition of translation of the virally-encoded EBNA1 mRNA, and involves the interaction of host protein nucleolin (NCL) with G-quadruplex (G4) structures that form in the glycine-alanine repeat (GAr)-encoding sequence of the EBNA1 mRNA. Ligands that bind to these G4-RNA can prevent their interaction with NCL, leading to disinhibition of EBNA1 expression and antigen presentation, thereby interfering with the immune evasion of EBNA1 and therefore of EBV (M.J. Lista et al., Nature Commun., 2017, 8, 16043). In this work, we synthesized and studied a series of 20 cationic bis(acylhydrazone) derivatives designed as G4 ligands. The in vitro evaluation showed that most derivatives based on central pyridine (Py), naphthyridine (Naph) or phenanthroline (Phen) units were efficient G4 binders, in contrast to their pyrimidine (Pym) counterparts, which were poor G4 binders due to a significantly different molecular geometry. The influence of lateral heterocyclic units (N-substituted pyridinium or quinolinium residues) on G4-binding properties was also investigated. Two novel compounds, namely PyDH2 and PhenDH2, used at a 5 μM concentration, were able to significantly enhance EBNA1 expression in H1299 cells in a GAr-dependent manner, while being significantly less toxic than the prototype drug PhenDC3 (GI50 > 50 μM). Antigen presentation, RNA pull-down and proximity ligation assays confirmed that the effect of both drugs was related to the disruption of NCL-EBNA1 mRNA interaction and the subsequent promotion of GAr-restricted antigen presentation. Our work provides a novel modular scaffold for the development of G-quadruplex-targeting drugs acting through interference with G4-protein interaction.
  • Functionalization of 2-methyl- and 2,7-dimethyl-1,8-naphthyridine
    作者:George R. Newkome、Kevin J. Theriot、Veronica K. Majestic、Perri Anne Spruell、Gregory R. Baker
    DOI:10.1021/jo00296a051
    日期:1990.4
查看更多