摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

trans-1,2-Dichloroethylene epoxide | 16650-12-7

分子结构分类

中文名称
——
中文别名
——
英文名称
trans-1,2-Dichloroethylene epoxide
英文别名
trans-2,3-dichlorooxirane;(2S,3S)-2,3-dichlorooxirane
trans-1,2-Dichloroethylene epoxide化学式
CAS
16650-12-7
化学式
C2H2Cl2O
mdl
——
分子量
112.943
InChiKey
BLJBBKAZKREJGI-JCYAYHJZSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    20 °C(Press: 106 Torr)
  • 密度:
    1.54±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.4
  • 重原子数:
    5
  • 可旋转键数:
    0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    12.5
  • 氢给体数:
    0
  • 氢受体数:
    1

SDS

SDS:3866e50a6977516ce7a24376fcf7c509
查看

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Maier, Guenther; Sayrac, Tugmac; Reisenauer, Hans Peter, Chemische Berichte, 1982, vol. 115, # 6, p. 2202 - 2213
    摘要:
    DOI:
  • 作为产物:
    描述:
    参考文献:
    名称:
    通过在氯乙烯作为主要底物上生长的需氧培养物进行顺式1,2-二氯乙烯的新陈代谢。
    摘要:
    有氧浓缩培养物在氯乙烯(VC)上生长,这是唯一的碳和能量来源。在没有VC的情况下,浓缩培养物先氧化为顺式1,2-二氯乙烯(cDCE),然后在较小程度上反式为反式1,2-二氯乙烯(tDCE),然后氧化成相应的DCE-环氧化物。当提供VC(1.3 mM)和cDCE(0.2-0.3 mM)时,富集培养物将重复添加cDCE代谢超过85天。还证明了重复添加tDCE的代谢分解作用,但非生长底物与VC的比率较低。VC生长的铜绿假单胞菌MF1(先前从富集培养物中分离)也容易代谢cDCE,观察到的转化能力(Tc,obs)为0.82微摩尔cDCE /毫克总悬浮固体(TSS)。当提供VC和cDCE时,直到几乎所有的VC被消耗掉,MF1才开始对cDCE进行代谢分解。cDCE的存在降低了VC使用的最大特定速率。建立了动力学模型,该模型通过用于底物和非生长底物的Monod参数以及失活和抑制系数来描述这些现象。MF1对
    DOI:
    10.1021/es011220v
点击查看最新优质反应信息

文献信息

  • THE RADIOLYTIC SYNTHESIS OF THE cis- AND trans-ISOMERS OF 1,2-DICHLOROETHYLENE OXIDE
    作者:Jean H. Futrell、Amos S. Newton
    DOI:10.1021/ja01549a081
    日期:1958.8
    The cis- and trans-forms of 1.2-dichloroethylene oxide were produced. These compounds were not reported previously, and because of current interest in radiation utilization, preliminary data on the radolytic synthesis and physical properties are presented. (J.R.D.)
    产生了 1.2-二环氧乙烷的顺式和反式。这些化合物以前没有报道过,并且由于目前对辐射利用的兴趣,提供了有关辐射分解合成和物理特性的初步数据。(JRD)
  • Halogenated epoxides. 9. Reaction of trans-2,3-dichlorooxirane with dimethyl sulfide
    作者:Karl Griesbaum、Pallikaparampil M. Scaria、Thomas Doehling
    DOI:10.1021/jo00358a026
    日期:1986.4
  • Griesbaum, Karl; Hayes, Michael P.; Werli, Vera, Canadian Journal of Chemistry, 1988, vol. 66, p. 1366 - 1370
    作者:Griesbaum, Karl、Hayes, Michael P.、Werli, Vera
    DOI:——
    日期:——
  • Biodegradation of cis-1,2-dichloro-ethylene at low concentrations with methane-oxidizing bacteria in a biofilm reactor
    作者:J.P. Arcangeli、E. Arvin、M. Mejlhede、F.R. Lauritsen
    DOI:10.1016/0043-1354(96)00075-9
    日期:1996.8
    This work focuses on the kinetics of cis-1,2-dichloro-ethylene (c-DCE) biodegradation at very low concentrations (mu g/l range) in an aerobic fixed-film reactor inoculated with a mixed culture of methane-oxidizing bacteria. Analysis of dissolved components (oxygen, methane, c-DCE) were performed by membrane-inlet mass-spectrometry allowing an on-line control of the reactor performance. The c-DCE degradation rate constant k(x)/K-s ranged from 0.1 to 5.5 x 10(-2)m(3)d(-1)g(x)(-1), depending on the c-DCE concentration. However, this degradation rate was underestimated because the amount of active biomass in the biofilm was small (15% to 20% of the total biofilm dry weight). Toxicity effects were observed when the c-DCE initial concentration was above 100 mu g/l, leading to a decrease of the c-DCE and methane removal rate. Analysis showed the formation of an intermediate compound subsequent to the c-DCE degradation. Preliminary analysis suggested that it was c-DCE-epoxide. This degradation product or its metabolites seem to be the cause of the deactivation of the cells. However, the toxic effect could be counterbalanced, and the c-DCE degradation rate could be partly sustained if methane was supplied continuously in the reactor so that inactivated cells were replaced. These results are of practical interest for groundwater restoration or for waterworks since concentrations generally encountered in contaminated aquifers are in the mu g/l range. Copyright (C) 1996 Elsevier Science Ltd
查看更多

同类化合物

()-2-(5-甲基-2-氧代苯并呋喃-3(2)-亚乙基)乙酸乙酯 (甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (反式)-4-壬烯醛 (双(2,2,2-三氯乙基)) (乙腈)二氯镍(II) (乙基N-(1H-吲唑-3-基羰基)ethanehydrazonoate) (βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (±)17,18-二HETE (±)-辛酰肉碱氯化物 (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (s)-2,3-二羟基丙酸甲酯 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 ([2-(萘-2-基)-4-氧代-4H-色烯-8-基]乙酸) ([1-(甲氧基甲基)-1H-1,2,4-三唑-5-基](苯基)甲酮) (Z)-5-辛烯甲酯 (Z)-4-辛烯醛 (Z)-4-辛烯酸 (Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-(-)-5'-苄氧基苯基卡维地洛 (S)-(-)-2-(α-(叔丁基)甲胺)-1H-苯并咪唑 (S)-(-)-2-(α-甲基甲胺)-1H-苯并咪唑 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-(+)-5,5'',6,6'',7,7'',8,8''-八氢-3,3''-二叔丁基-1,1''-二-2-萘酚,双钾盐 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-盐酸沙丁胺醇 (S)-溴烯醇内酯 (S)-氨氯地平-d4 (S)-氨基甲酸酯β-D-O-葡糖醛酸 (S)-8-氟苯并二氢吡喃-4-胺 (S)-7,7-双[(4S)-(苯基)恶唑-2-基)]-2,2,3,3-四氢-1,1-螺双茚满 (S)-4-(叔丁基)-2-(喹啉-2-基)-4,5-二氢噁唑 (S)-4-氯-1,2-环氧丁烷 (S)-3-(((2,2-二氟-1-羟基-7-(甲基磺酰基)-2,3-二氢-1H-茚满-4-基)氧基)-5-氟苄腈 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-3-(2-(二氟甲基)吡啶-4-基)-7-氟-3-(3-(嘧啶-5-基)苯基)-3H-异吲哚-1-胺 (S)-2-(环丁基氨基)-N-(3-(3,4-二氢异喹啉-2(1H)-基)-2-羟丙基)异烟酰胺 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-2-N-Fmoc-氨基甲基吡咯烷盐酸盐 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (SP-4-1)-二氯双(喹啉)-钯 (SP-4-1)-二氯双(1-苯基-1H-咪唑-κN3)-钯