Polypeptides bearing quaternary phosphonium side chains were synthesized via controlled ring-opening polymerization of chlorine-functionalized amino acid N-carboxyanhydride monomers followed by one-step nucleophilic substitution reaction with triethylphosphine. The conformation of the resulting polypeptides can be controlled by modulating the side-chain length and alpha-carbon stereochemistry. The phosphonium-based poly(L-glutamate) derivatives with 11 sigma-bond backbone-to-charge distance adopt stable alpha-helical conformation against pH and ionic strength changes. These helical, quaternary phosphonium-bearing polypeptides exhibit higher cell-penetrating capability than their racemic and random-coiled analogues. They enter cells mainly via an energy-independent, nonendocytic cell membrane transduction mechanism and exhibit low cytotoxicity, substantiating their potential use as a safe and effective cell-penetrating agent.
ANTIMICROBIAL ALPHA-HELICAL CATIONIC POLYPEPTIDES
申请人:The Board of Trustees of the University of Illinois
公开号:US20180179336A1
公开(公告)日:2018-06-28
The invention provides antimicrobial polypeptides (AMPs) with high radial amphiphilicity. Unlike typical AMPs characterized by facial amphiphilicity or biomimetic antimicrobial polymers with randomly distributed charged and hydrophobic groups, these new AMPs are homo-polypeptides with radially amphiphilic structure. They adopt a stable α-helical conformation with a hydrophobic helical core and a charged exterior shell, formed by flexible hydrophobic side chains with terminal charge group. The radially amphiphilic polypeptides offer several advantages over conventional AMPs with regard to stability against protease and simplicity of design. They also exhibit high antibacterial activity against both Gram-negative and Gram-positive bacteria and low hemolytic activity. The AMPs thus provide a general platform for treating drug-resistant bacterial infections.