An expedient, catalytic method for the synthesis of diverse azaindoles and indoles, starting from readily available and inexpensive starting materials, is described. Conditions were developed for effective reductive alkylation of electron-deficient o-chloroarylamines, substrates previously viewed as poor partners in this reaction. The derived N-alkylated o-chloroarylamines were elaborated to N-alkylazaindoles and N-alkylindoles via a novel one-pot process comprising copper-free Sonogashira alkynylation and a base-mediated indolization reaction.
An expedient, catalytic method for the synthesis of diverse azaindoles and indoles, starting from readily available and inexpensive starting materials, is described. Conditions were developed for effective reductive alkylation of electron-deficient o-chloroarylamines, substrates previously viewed as poor partners in this reaction. The derived N-alkylated o-chloroarylamines were elaborated to N-alkylazaindoles and N-alkylindoles via a novel one-pot process comprising copper-free Sonogashira alkynylation and a base-mediated indolization reaction.
An expedient, catalytic method for the synthesis of diverse azaindoles and indoles, starting from readily available and inexpensive starting materials, is described. Conditions were developed for effective reductive alkylation of electron-deficient o-chloroarylamines, substrates previously viewed as poor partners in this reaction. The derived N-alkylated o-chloroarylamines were elaborated to N-alkylazaindoles and N-alkylindoles via a novel one-pot process comprising copper-free Sonogashira alkynylation and a base-mediated indolization reaction.