摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

13-hydroperoxy-9,11-octadecadienoic acid | 7324-21-2

中文名称
——
中文别名
——
英文名称
13-hydroperoxy-9,11-octadecadienoic acid
英文别名
13-hydroperoxyoctadecadienoic acid;hydroperoxyoctadecadienoic acid;linoleic acid 13-hydroperoxide;13 HPOD;13-Hydroperoxy-octadecadien-(9,11)-saeure;13-Hydroperoxyoctadeca-9,11-dienoic acid
13-hydroperoxy-9,11-octadecadienoic acid化学式
CAS
7324-21-2
化学式
C18H32O4
mdl
——
分子量
312.45
InChiKey
JDSRHVWSAMTSSN-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.4
  • 重原子数:
    22
  • 可旋转键数:
    15
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.72
  • 拓扑面积:
    66.8
  • 氢给体数:
    2
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    13-hydroperoxy-9,11-octadecadienoic acid 在 sodium tetrahydroborate 作用下, 以 乙醇 为溶剂, 反应 1.42h, 生成 (R,S)-coriolic acid[14C]-13-Hydroxyoctadecadienoic acid
    参考文献:
    名称:
    罂粟种子(罂粟)中品尝苦味素的表征。
    摘要:
    罂粟籽(的活性引导分馏罂粟L.)提取物和脂肪酸氧化模型实验分析,然后通过液相色谱时间飞行质谱,串联质谱,和单/二维核磁共振实验透出五个苦味脂肪酸(化学结构15),三甘油单酯(6 - 8),6个C 18个-lipidoxidation产品(9 - 14),和四个脂质氧化降解产物(15和17 - 19)以及两个以前未报告的甘油单酸酯氧化降解产物,即9-(2',3'-二羟丙氧基)-9-氧羰酸(1-azeloyl- rac -glycerol ,16)和1-(2',3' -二羟丙基)-8-(5″-氧代-2″,5″-二氢fruan-2″-基)-辛酸酯(1-ODFO- rac-甘油,20)。感官研究显示苦味阈值浓度在0.08至0.29 mmol / L之间,特别是对于较高氧化度的C 18-脂肪酸三羟基十八烯酸(THOE,12),12,13-二羟基-9-氧代-10-辛烯酸(12 ,13-diOH-9-oxo,13)和9
    DOI:
    10.1021/acs.jafc.9b06655
  • 作为产物:
    描述:
    (Z,Z)-9,12-十八烷二烯酸二聚物 在 soybean lipoxidase from glycine max 作用下, 以 aq. phosphate buffer 、 乙醇 为溶剂, 反应 0.25h, 生成 13-hydroperoxy-9,11-octadecadienoic acid
    参考文献:
    名称:
    偶氮引发剂或脂质氢过氧化物中抗氧化剂的反应目标诱导脂质过氧化。
    摘要:
    据报道,脂质过氧化(LPO)参与了几种氧化性疾病的发病机理,并且已经提出了使用抗氧化剂的几种治疗方法。LPO被认为可以通过一系列复杂的多步反应表明每种抗氧化剂的活性可能不同,并且取决于反应分子。因此,在这项研究中,我们评估了几种抗氧化剂对偶氮引发剂2,2'-偶氮双(2-ami基丙烷)二盐酸盐(AAPH)或脂质氢过氧化物,氢过氧十八碳二烯酸(HpODE)诱导的花生四烯酸(AA)过氧化的抑制机制。 )/ hemin。依达拉奉,ferrostatin-1,TEMPO和trolox有效抑制丙二醛(MDA)的产生以及AAPH诱导的LPO中产生的几种氧化AA,因为它们具有清除脂质过氧化自由基的能力。相比之下,依布硒仑和ferrostatin-1在HpODE /血红素诱导的过氧化中显示出强大的抗氧化活性。在这种情况下 ebselen和ferrostatin-1被认为可以将HpODE及其衍生的烷氧基还原为
    DOI:
    10.1080/10715762.2020.1761020
  • 作为试剂:
    参考文献:
    名称:
    Free radical epoxidation of 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by hematin and polyunsaturated fatty acid hydroperoxides
    摘要:
    DOI:
    10.1021/ja00412a037
点击查看最新优质反应信息

文献信息

  • The autooxidation process in linoleic acid screened by Raman spectroscopy
    作者:N. F. L. Machado、L. A. E. Batista de Carvalho、J. C. Otero、M. P. M. Marques
    DOI:10.1002/jrs.4121
    日期:2012.12
    The chemical changes associated to the autooxidation process of linoleic acid (LA) were detected by Raman spectroscopy and interpreted in the light of density functional theory (DFT) calculations performed for both the fatty acid and its main oxidation products. The present methodology, applied for a six-day period upon induction of oxidation (through heating), allowed to understand the chemical modifications occurring during the oxidation process. Raman spectroscopy was shown to be a suitable and reliable technique for assessing the oxidation degree of fatty acid samples, particularly pure fatty acids, mainly when computational methods are used alongside to predict the spectral features of the distinct chemical entities involved. Screening of the oxidation process was mostly based on the loss of intensity of the bands assigned to LA cis-double bonds. Copyright © 2012 John Wiley & Sons, Ltd.
    通过拉曼光谱检测到与亚油酸(LA)自动氧化过程相关的化学变化,并根据密度泛函理论(DFT)计算对脂肪酸及其主要氧化产物进行了解释。在氧化诱导(通过加热)的六天时间内应用了当前方法,从而能够了解氧化过程中发生的化学变化。拉曼光谱被证明是一种评估脂肪酸样品氧化程度的合适且可靠的技术,特别是纯脂肪酸,主要是在使用计算方法来预测所涉及的不同化学实体的光谱特征时。氧化过程的筛选主要基于LA顺式双键的波段强度的损失。版权所有 © 2012 John Wiley & Sons, Ltd.
  • A non-canonical caleosin from<i>Arabidopsis</i>efficiently epoxidizes physiological unsaturated fatty acids with complete stereoselectivity
    作者:Elizabeth Blée、Martine Flenet、Benoît Boachon、Marie-Laure Fauconnier
    DOI:10.1111/j.1742-4658.2012.08757.x
    日期:2012.10
    In plants, epoxygenated fatty acids (EFAs) are constituents of oil seeds as well as defence molecules and components of biopolymers (cutin, suberin). While the pleiotropic biological activities of mammalian EFAs have been well documented, there is a paucity of information on the physiological relevance of plant EFAs and their biosynthesis. Potential candidates for EFA formation are caleosin‐type peroxygenases which catalyze the epoxidation of unsaturated fatty acids in the presence of hydroperoxides as co‐oxidants. However, the caleosins characterized so far, which are mostly localized in seeds, are poor epoxidases. In sharp contrast, quantitative RTPCR analysis revealed that PXG4, a class II caleosin gene, is expressed in roots, stems, leaves and flowers of Arabidopsis. Expressed in yeast, PXG4 encodes a calcium‐dependent membrane‐associated hemoprotein able to catalyze typical peroxygenase reactions. Moreover, we show here that purified recombinant PXG4 is an efficient fatty acid epoxygenase, catalyzing the oxidation of cis double bonds of unsaturated fatty acids. Physiological linoleic and linolenic acids proved to be the preferred substrates for PXG4; they are oxidized into the different positional isomers of the monoepoxides and into diepoxides. An important regioselectivity was observed; the C‐12,13 double bond of these unsaturated fatty acids being the least favored unsaturation epoxidized by PXG4, linolenic acid preferentially yielded the 9,10‐15,16‐diepoxide. Remarkably, PXG4 catalyzes exclusively the formation of (R),(S)‐epoxide enantiomers, which is the absolute stereochemistry of the epoxides found in planta. These findings pave the way for the study of the functional role of EFAs and caleosins in plants.
  • Characterization of Bitter-Tasting Oxylipins in Poppy Seeds (<i>Papaver somniferum</i> L.)
    作者:Johanna Lainer、Corinna Dawid、Andreas Dunkel、Peter Gläser、Stephanie Wittl、Thomas Hofmann
    DOI:10.1021/acs.jafc.9b06655
    日期:2020.9.23
    time-of-flight mass spectrometry, tandem mass spectrometry, and one-/two-dimensional nuclear magnetic resonance experiments, revealed the chemical structures of five bitter-tasting fatty acids (1–5), three monoglycerides (6–8), six C18-lipidoxidation products (9–14), and four lipid oxidation degradation products (15 and 17–19) as well as two previously unreported monoglyceride oxidation degradation
    罂粟籽(的活性引导分馏罂粟L.)提取物和脂肪酸氧化模型实验分析,然后通过液相色谱时间飞行质谱,串联质谱,和单/二维核磁共振实验透出五个苦味脂肪酸(化学结构15),三甘油单酯(6 - 8),6个C 18个-lipidoxidation产品(9 - 14),和四个脂质氧化降解产物(15和17 - 19)以及两个以前未报告的甘油单酸酯氧化降解产物,即9-(2',3'-二羟丙氧基)-9-氧羰酸(1-azeloyl- rac -glycerol ,16)和1-(2',3' -二羟丙基)-8-(5″-氧代-2″,5″-二氢fruan-2″-基)-辛酸酯(1-ODFO- rac-甘油,20)。感官研究显示苦味阈值浓度在0.08至0.29 mmol / L之间,特别是对于较高氧化度的C 18-脂肪酸三羟基十八烯酸(THOE,12),12,13-二羟基-9-氧代-10-辛烯酸(12 ,13-diOH-9-oxo,13)和9
  • Reaction targets of antioxidants in azo-initiator or lipid hydroperoxide induced lipid peroxidation
    作者:Kota Saito、Yuta Matsuoka、Ken-ichi Yamada
    DOI:10.1080/10715762.2020.1761020
    日期:2020.5.3
    diseases, and several therapeutic approaches using antioxidants have been proposed. LPO is thought to progress via a complicated series of multistep reactions suggesting that the activity of each antioxidant may be different, and depends on the reacting molecules. Hence, in this study, we evaluated the inhibitory mechanisms of several antioxidants toward arachidonic acid (AA) peroxidation induced by
    据报道,脂质过氧化(LPO)参与了几种氧化性疾病的发病机理,并且已经提出了使用抗氧化剂的几种治疗方法。LPO被认为可以通过一系列复杂的多步反应表明每种抗氧化剂的活性可能不同,并且取决于反应分子。因此,在这项研究中,我们评估了几种抗氧化剂对偶氮引发剂2,2'-偶氮双(2-ami基丙烷)二盐酸盐(AAPH)或脂质氢过氧化物,氢过氧十八碳二烯酸(HpODE)诱导的花生四烯酸(AA)过氧化的抑制机制。 )/ hemin。依达拉奉,ferrostatin-1,TEMPO和trolox有效抑制丙二醛(MDA)的产生以及AAPH诱导的LPO中产生的几种氧化AA,因为它们具有清除脂质过氧化自由基的能力。相比之下,依布硒仑和ferrostatin-1在HpODE /血红素诱导的过氧化中显示出强大的抗氧化活性。在这种情况下 ebselen和ferrostatin-1被认为可以将HpODE及其衍生的烷氧基还原为
查看更多