products, and biologically active compounds showcase the robustness and functional‐group tolerance of the reaction. The key to the success of the reaction could be the possible formation of the strong Si−O bond via a Brook‐type rearrangement. Given its simplicity and efficiency, this ligation has the potential to unfold new applications in the areas of medicinal chemistry and chemical biology.
A ruthenium-catalyzed [1,2]-Brook rearrangement involved dominosequence is presented to prepare highly functionalized silyloxy indenes with atomic- and step-economy. This domino reaction is triggered by acylsilane-directed C–H activation, and the aldehyde controlled the subsequent enol cyclization/Brook Rearrangement other than β–H elimination. The protocol tolerates a broad substitution pattern,
Studies into the Cp*Rh(III)-catalysed hydroarylation of alkenes with aryl acyl silanes led to the discovery of a new synthetic strategy to access unique silicon derived indene frameworks. Rather than protodemetalation of the metal enolate formed following insertion of an alkene into the aryl C–H bond, intramolecular aldolcondensation of the acyl silane occurred to generate a series of 2-formyl- and
Visible-Light-Induced Catalyst-Free Carboxylation of Acylsilanes with Carbon Dioxide
作者:Zhengning Fan、Yaping Yi、Shenhao Chen、Chanjuan Xi
DOI:10.1021/acs.orglett.1c00435
日期:2021.3.19
Intermolecular carbon–carbon bond formation between acylsilanes and carbondioxide (CO2) was achieved by photoirradiation under catalyst-free conditions. In this reaction, siloxycarbenes generated by photoisomerization of the acylsilanes added to the C═O bond of CO2 to give α-ketocarboxylates, which underwent hydrolysis to afford α-ketocarboxylic derivatives in good yields. Control experiments suggest