摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

12-hydroperoxy-cis,trans,cis-9,13,15-octadecatrienoic acid | 123372-21-4

中文名称
——
中文别名
——
英文名称
12-hydroperoxy-cis,trans,cis-9,13,15-octadecatrienoic acid
英文别名
(9Z,13E,15Z)-12-hydroperoxyoctadeca-9,13,15-trienoic acid
12-hydroperoxy-cis,trans,cis-9,13,15-octadecatrienoic acid化学式
CAS
123372-21-4
化学式
C18H30O4
mdl
——
分子量
310.434
InChiKey
FLJRXICXLUZYBE-YMVUBCEOSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    454.5±40.0 °C(Predicted)
  • 密度:
    1.016±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    4.8
  • 重原子数:
    22
  • 可旋转键数:
    14
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.61
  • 拓扑面积:
    66.8
  • 氢给体数:
    2
  • 氢受体数:
    4

反应信息

  • 作为产物:
    描述:
    Γ-十八碳三烯酸 在 recombinant linoleate 9S‑lipoxygenase from Myxococcus xanthus 作用下, 以 aq. buffer 为溶剂, 生成 12-hydroperoxy-cis,trans,cis-9,13,15-octadecatrienoic acid
    参考文献:
    名称:
    从C18多不饱和脂肪酸微生物合成亚油酸酯9 S-脂氧合酶衍生的植物C18氧化脂
    摘要:
    由C18多不饱和脂肪酸(PUFA)生物合成的植物羟基磷脂,包括羟基脂肪酸,环氧羟基脂肪酸和三羟基脂肪酸,参与了针对真菌感染的病原体特异性防御​​机制。然而,尚未报道它们通过植物酶的定量生物转化。少数细菌会产生C18三羟基脂肪酸,但尚未报道与细菌中植物脂蛋白生物合成有关的酶和途径。在这项研究中,我们首先通过表达亚油酸9报告C18多不饱和脂肪酸的生物转化成植物C18氧脂素小号脂肪氧合酶与不从变形菌环氧化物水解酶粘细菌在重组大肠杆菌。在九个类型的植物氧脂素,12,13-环氧-14-羟基的顺式,顺式-9,15十八碳二烯酸,鉴定为通过NMR分析的新化合物,以及9,10,11羟基顺式,顺式通过LC-MS / MS分析,建议将-6,12-十八碳二烯酸和12,13,14-三羟基顺式,顺式-9,15-十八碳二烯酸作为新化合物。这项研究表明,具有生物活性的植物脂蛋白可以通过微生物酶产生。
    DOI:
    10.1021/acs.jafc.8b05857
点击查看最新优质反应信息

文献信息

  • Physcomitrella patens has lipoxygenases for both eicosanoid and octadecanoid pathways
    作者:Aldwin Anterola、Cornelia Göbel、Ellen Hornung、George Sellhorn、Ivo Feussner、Howard Grimes
    DOI:10.1016/j.phytochem.2008.11.012
    日期:2009.1
    Mosses have substantial amounts of long chain C20 polyunsaturated fatty acids, such as arachidonic and eicosapentaenoic acid, in addition to the shorter chain C18 alpha-linolenic and linoleic acids, which are typical substrates of lipoxygenases in flowering plants. To identify the fatty acid substrates used by moss lipoxygenases, eight lipoxygenase genes from Physcomitrella patens were heterologously expressed in Escherichia coli, and then analyzed for lipoxygenase activity using linoleic, alpha-linolenic and arachidonic acids as substrates. Among the eight moss lipoxygenases, only seven were found to be enzymatically active in vitro, two of which selectively used arachidonic acid as the substrate, while the other five preferred alpha-linolenic acid. Based on enzyme assays using a Clark-type oxygen electrode, all of the active lipoxygenases had an optimum pH at 7.0, except for one with highest activity at pH 5.0. HPLC analyses indicated that the two arachidonic acid lipoxygenases form (12S)-hydroperoxy eicosatetraenoic acid as the main product, while the other five lipoxygenases produce mainly (13S)-hydroperoxy octadecatrienoic acid from alpha-linolenic acid. These results suggest that mosses may have both C20 and C18 based oxylipin pathways. Published by Elsevier Ltd.
  • Microbial Synthesis of Linoleate 9<i>S</i>-Lipoxygenase Derived Plant C18 Oxylipins from C18 Polyunsaturated Fatty Acids
    作者:Jung-Ung An、In-Gyu Lee、Yoon-Joo Ko、Deok-Kun Oh
    DOI:10.1021/acs.jafc.8b05857
    日期:2019.3.20
    oxylipins, including hydroxy fatty acids, epoxy hydroxy fatty acids, and trihydroxy fatty acids, which are biosynthesized from C18 polyunsaturated fatty acids (PUFAs), are involved in pathogen-specific defense mechanisms against fungal infections. However, their quantitative biotransformation by plant enzymes has not been reported. A few bacteria produce C18 trihydroxy fatty acids, but the enzymes and pathways
    由C18多不饱和脂肪酸(PUFA)生物合成的植物羟基磷脂,包括羟基脂肪酸,环氧羟基脂肪酸和三羟基脂肪酸,参与了针对真菌感染的病原体特异性防御​​机制。然而,尚未报道它们通过植物酶的定量生物转化。少数细菌会产生C18三羟基脂肪酸,但尚未报道与细菌中植物脂蛋白生物合成有关的酶和途径。在这项研究中,我们首先通过表达亚油酸9报告C18多不饱和脂肪酸的生物转化成植物C18氧脂素小号脂肪氧合酶与不从变形菌环氧化物水解酶粘细菌在重组大肠杆菌。在九个类型的植物氧脂素,12,13-环氧-14-羟基的顺式,顺式-9,15十八碳二烯酸,鉴定为通过NMR分析的新化合物,以及9,10,11羟基顺式,顺式通过LC-MS / MS分析,建议将-6,12-十八碳二烯酸和12,13,14-三羟基顺式,顺式-9,15-十八碳二烯酸作为新化合物。这项研究表明,具有生物活性的植物脂蛋白可以通过微生物酶产生。
查看更多