摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(E)-4-(trimethylammonio)but-2-enoate | 6778-30-9

中文名称
——
中文别名
——
英文名称
(E)-4-(trimethylammonio)but-2-enoate
英文别名
crotonobetaine;crotonylbetaine;Crotonic acid betaine;(E)-4-(trimethylazaniumyl)but-2-enoate
(E)-4-(trimethylammonio)but-2-enoate化学式
CAS
6778-30-9
化学式
C7H13NO2
mdl
——
分子量
143.186
InChiKey
GUYHPGUANSLONG-SNAWJCMRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.7
  • 重原子数:
    10
  • 可旋转键数:
    2
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.57
  • 拓扑面积:
    40.1
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

点击查看最新优质反应信息

文献信息

  • Targeting Carnitine Biosynthesis: Discovery of New Inhibitors against γ-Butyrobetaine Hydroxylase
    作者:Kaspars Tars、Janis Leitans、Andris Kazaks、Diana Zelencova、Edgars Liepinsh、Janis Kuka、Marina Makrecka、Daina Lola、Viktors Andrianovs、Daina Gustina、Solveiga Grinberga、Edvards Liepinsh、Ivars Kalvinsh、Maija Dambrova、Einars Loza、Osvalds Pugovics
    DOI:10.1021/jm401603e
    日期:2014.3.27
    γ-Butyrobetaine hydroxylase (BBOX) catalyzes the conversion of gamma butyrobetaine (GBB) to l-carnitine, which is involved in the generation of metabolic energy from long-chain fatty acids. BBOX inhibitor 3-(1,1,1-trimethylhydrazin-1-ium-2-yl)propanoate (mildronate), which is an approved, clinically used cardioprotective drug, is a relatively poor BBOX inhibitor and requires high daily doses. In this
    γ-丁甜菜碱羟化酶(BBOX)催化将γ-丁甜菜碱(GBB)转化为1-肉碱,这涉及从长链脂肪酸产生代谢能。BBOX抑制剂3-(1,1,1-三甲基肼-1-鎓-2-基)丙酸酯(mildronate)是一种批准的,临床上使用的心脏保护药物,是一种相对较差的BBOX抑制剂,需要每天高剂量。在本文中,我们描述了51种化合物的设计,合成和性质,其中包括GBB和次膦酸酯类似物。我们发现了具有改进的IC 50的新型BBOX抑制剂价值观 最好的例子是在纳摩尔范围内,与次膦酸盐相比,大约好2个数量级。对于六种抑制剂,已经解决了与BBOX形成复合物的晶体结构,以解释其活性并为进一步的抑制剂设计铺平了道路。
  • Neutron Diffraction Structure of (2<i>R</i>,3<i>R</i>)-<scp>l</scp>-(−)-[2-D]Carnitine Tetrachloroaurate, [(CH<sub>3</sub>)<sub>3</sub>N-CH<sub>2</sub>-CHOH-CHD-COOH]<sup>+</sup>[AuCl<sub>4</sub>]<sup>-</sup>:  Determination of the Absolute Stereochemistry of the Crotonobetaine-to-Carnitine Transformation Catalyzed by <scp>l</scp>-Carnitine Dehydratase from <i>Escherichia coli</i>
    作者:Robert Bau、André Schreiber、Tobias Metzenthin、Roy S. Lu、Frank Lutz、Wim T. Klooster、Thomas F. Koetzle、Hermann Seim、Hans-Peter Kleber、Fred Brewer、Sasha Englard
    DOI:10.1021/ja972105g
    日期:1997.12.17
    Single-crystal neutron diffraction has been used to determine the stereochemical course of the hydration of trans-crotonobetaine to l-(−)-carnitine by the enzyme l-carnitine dehydratase. Firstly, an X-ray analysis of the undeuterated carnitinium salt [(CH3)3N-CH2-CH(OH)-CH2-COOH]+[AuCl4]- confirmed that the absolute configuration at the C3 position of l-(−)-carnitine (the CHOH group) is indeed R. This
    单晶中子衍射已被用于确定通过左旋肉碱脱水酶将反式巴豆甜菜碱水合为 l-(-)-肉碱的立体化学过程。首先,未氘化肉碱盐 [(CH3)3N-CH2-CH(OH)-CH2-COOH]+[AuCl4]- 的 X 射线分析证实了 l-(-)- 在 C3 位置的绝对构型肉碱(CHOH 基团)确实是 R。这是使用金原子作为异常散射源实现的。然后,使用来自大肠杆菌的纯化的左旋肉碱脱水酶,通过在 D2O 中水合反式巴豆甜菜碱来制备立体定向氘化的 l-(-)-[2-D] 肉碱。随后对氘化 [(CH3)3N-CH2-CH(OH)-CH2-COOH]+ [AuCl4]- 的中子分析表明,C2 位的 CHD 基团也具有绝对 R 构型,因此确定跨巴豆甜菜碱的 CC 双键添加 D2O 是通过立体特异性顺式途径进行的。相比之下,所有其他水合-脱水反应...
  • Bifunctional chiral synthons via biochemical methods. 5. Preparation of (S)-ethyl hydrogen-3-hydroxyglutarate, key intermediate to (R)-4-amino-3-hydroxybutyric acid and L-carnitine.
    作者:Aravamudan S. Gopalan、Charles J. Sih
    DOI:10.1016/s0040-4039(01)81572-0
    日期:——
    Microbial enantioselective hydrolysis of diethyl-3-hydroxyglutarate afforded (S)-ethyl hydrogen-3-hydroxyglutarate, which was transformed into (R)-4-amino-3-hydroxybutyric acid and L-carnitine, via a Curtius and Hunsdiecker rearrangement, respectively.
    3-羟基戊二酸二乙酯的微生物对映选择性水解得到(S)-3-羟基戊二酸氢乙酯,分别通过Curtius和Hunsdiecker重排将其转化为(R)-4-氨基-3-羟基丁酸和L-肉碱。 。
  • Role of betaine:CoA ligase (CaiC) in the activation of betaines and the transfer of coenzyme A in<i>Escherichia coli</i>
    作者:V. Bernal、P. Arense、V. Blatz、M.A. Mandrand-Berthelot、M. Cánovas、J.L. Iborra
    DOI:10.1111/j.1365-2672.2008.03740.x
    日期:2008.7
    Aims: Characterization of the role of CaiC in the biotransformation of trimethylammonium compounds into l(−)‐carnitine in Escherichia coli.Methods and Results: The caiC gene was cloned and overexpressed in E. coli and its effect on the production of l(−)‐carnitine was analysed. Betaine:CoA ligase and CoA transferase activities were analysed in cell free extracts and products were studied by electrospray mass spectrometry (ESI‐MS). Substrate specificity of the caiC gene product was high, reflecting the high specialization of the carnitine pathway. Although CoA‐transferase activity was also detected in vitro, the main in vivo role of CaiC was found to be the synthesis of betainyl‐CoAs. Overexpression of CaiC allowed the biotransformation of crotonobetaine to l(−)‐carnitine to be enhanced nearly 20‐fold, the yield reaching up to 30% (with growing cells). Higher yields were obtained using resting cells (up to 60%), even when d(+)‐carnitine was used as substrate.Conclusions: The expression of CaiC is a control step in the biotransformation of trimethylammonium compounds in E. coli.Significance and Impact of the Study: A bacterial betaine:CoA ligase has been characterized for the first time, underlining its important role for the production of l‐carnitine with Escherichia coli.
    目的:研究 CaiC 在大肠杆菌将三甲基铵化合物生物转化为 l(-)-肉碱过程中的作用: 克隆 caiC 基因并在大肠杆菌中过表达,分析其对 l(-)-肉碱生产的影响。分析了细胞游离提取物中甜菜碱:CoA 连接酶和 CoA 转移酶的活性,并通过电喷雾质谱(ESI-MS)对产物进行了研究。caiC 基因产物的底物特异性很高,反映了肉碱途径的高度专业化。虽然在体外也检测到了 CoA 转移酶活性,但发现 CaiC 在体内的主要作用是合成甜菜碱酰-CoAs。过量表达 CaiC 使巴豆甜菜碱向 l(-)-肉碱的生物转化提高了近 20 倍,产量高达 30%(生长细胞)。即使使用 d(+)-肉碱作为底物,静止细胞也能获得更高的产量(高达 60%): 结论:CaiC 的表达是大肠杆菌对三甲基铵化合物进行生物转化的一个控制步骤: 该研究首次鉴定了一种细菌甜菜碱:CoA 连接酶,强调了它在大肠杆菌生产左旋肉碱过程中的重要作用。
  • The <i>fixA</i> and <i>fixB</i> Genes Are Necessary for Anaerobic Carnitine Reduction in <i>Escherichia coli</i>
    作者:Angelique Walt、Michael L. Kahn
    DOI:10.1128/jb.184.14.4044-4047.2002
    日期:2002.7.15
    ABSTRACT

    In Escherichia coli , the use of carnitine as a terminal electron acceptor depends on a functional caiTABCDE operon. It had been suggested that the adjacent but divergent fixABCX operon is also required for carnitine metabolism, perhaps to provide electrons for carnitine reduction. We have constructed E. coli fixA and fixB mutants and find that they are unable to reduce carnitine to γ-butyrobetaine under anaerobic conditions.

    摘要 在 大肠杆菌中 中,肉碱作为末端电子受体的使用取决于功能性的 caiTABCDE 操作子。有人认为,相邻但不同的 fixABCX 操作子也是肉碱代谢所必需的,也许是为肉碱还原提供电子。我们构建了 大肠杆菌 fixA 和 突变体 突变体,发现它们无法在厌氧条件下将肉碱还原为 γ-丁卡因。
查看更多