摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Ethyl 3-(3-methyl-1,2-dioxaspiro[4.5]decan-3-yl)propanoate | 960121-65-7

中文名称
——
中文别名
——
英文名称
Ethyl 3-(3-methyl-1,2-dioxaspiro[4.5]decan-3-yl)propanoate
英文别名
——
Ethyl 3-(3-methyl-1,2-dioxaspiro[4.5]decan-3-yl)propanoate化学式
CAS
960121-65-7
化学式
C14H24O4
mdl
——
分子量
256.342
InChiKey
KNYYUWHFIDKINI-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.7
  • 重原子数:
    18
  • 可旋转键数:
    5
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.93
  • 拓扑面积:
    44.8
  • 氢给体数:
    0
  • 氢受体数:
    4

反应信息

  • 作为反应物:
    描述:
    Ethyl 3-(3-methyl-1,2-dioxaspiro[4.5]decan-3-yl)propanoatesodium hydroxide 作用下, 以 乙醇 为溶剂, 反应 6.0h, 以89%的产率得到3-(3-Methyl-1,2-dioxaspiro[4.5]decan-3-yl)propanoic acid
    参考文献:
    名称:
    Spiro- and Dispiro-1,2-dioxolanes:  Contribution of Iron(II)-Mediated One-Electron vs Two-Electron Reduction to the Activity of Antimalarial Peroxides
    摘要:
    Fourteen spiro- and dispiro-1,2-dioxolanes were synthesized by peroxycarbenium ion annulations with alkenes in yields ranging from 30% to 94%. Peroxycarbenium ion precursors included triethylsilyldiperoxyketals and -acetals derived from geminal dihydroperoxides and from a new method employing triethylsilylperoxyketals and -acetals derived from ozonolysis of alkenes. The 1,2-dioxolanes were either inactive or orders of magnitude less potent than the corresponding 1,2,4-trioxolanes or artemisinin against P. falciparum in vitro and P. berghei in vivo. In reactions with iron(II), the predominant reaction course for 1,2-dioxolane 3a was two-electron reduction. In contrast, the corresponding 1,2,4-trioxolane 1 and the 1,2,4-trioxane artemisinin undergo primarily one-electron iron(II)-mediated reductions. The key structural element in the latter peroxides appears to be an oxygen atom attached to one or both of the peroxide-bearing carbon atoms that permits rapid beta-scission reactions (or H shifts) to form primary or secondary carbon-centered radicals rather than further reduction of the initially formed Fe(HI) complexed oxy radicals.
    DOI:
    10.1021/jm0707673
  • 作为产物:
    描述:
    1-methoxy-1-[(triethylsilyl)dioxy]cyclohexane4-甲基-4-戊烯酸乙酯四氯化锡 作用下, 以 二氯甲烷 为溶剂, 以30%的产率得到Ethyl 3-(3-methyl-1,2-dioxaspiro[4.5]decan-3-yl)propanoate
    参考文献:
    名称:
    Spiro- and Dispiro-1,2-dioxolanes:  Contribution of Iron(II)-Mediated One-Electron vs Two-Electron Reduction to the Activity of Antimalarial Peroxides
    摘要:
    Fourteen spiro- and dispiro-1,2-dioxolanes were synthesized by peroxycarbenium ion annulations with alkenes in yields ranging from 30% to 94%. Peroxycarbenium ion precursors included triethylsilyldiperoxyketals and -acetals derived from geminal dihydroperoxides and from a new method employing triethylsilylperoxyketals and -acetals derived from ozonolysis of alkenes. The 1,2-dioxolanes were either inactive or orders of magnitude less potent than the corresponding 1,2,4-trioxolanes or artemisinin against P. falciparum in vitro and P. berghei in vivo. In reactions with iron(II), the predominant reaction course for 1,2-dioxolane 3a was two-electron reduction. In contrast, the corresponding 1,2,4-trioxolane 1 and the 1,2,4-trioxane artemisinin undergo primarily one-electron iron(II)-mediated reductions. The key structural element in the latter peroxides appears to be an oxygen atom attached to one or both of the peroxide-bearing carbon atoms that permits rapid beta-scission reactions (or H shifts) to form primary or secondary carbon-centered radicals rather than further reduction of the initially formed Fe(HI) complexed oxy radicals.
    DOI:
    10.1021/jm0707673
点击查看最新优质反应信息

文献信息

  • Spiro- and Dispiro-1,2-dioxolanes:  Contribution of Iron(II)-Mediated One-Electron vs Two-Electron Reduction to the Activity of Antimalarial Peroxides
    作者:Xiaofang Wang、Yuxiang Dong、Sergio Wittlin、Darren Creek、Jacques Chollet、Susan A. Charman、Josefina Santo Tomas、Christian Scheurer、Christopher Snyder、Jonathan L. Vennerstrom
    DOI:10.1021/jm0707673
    日期:2007.11.1
    Fourteen spiro- and dispiro-1,2-dioxolanes were synthesized by peroxycarbenium ion annulations with alkenes in yields ranging from 30% to 94%. Peroxycarbenium ion precursors included triethylsilyldiperoxyketals and -acetals derived from geminal dihydroperoxides and from a new method employing triethylsilylperoxyketals and -acetals derived from ozonolysis of alkenes. The 1,2-dioxolanes were either inactive or orders of magnitude less potent than the corresponding 1,2,4-trioxolanes or artemisinin against P. falciparum in vitro and P. berghei in vivo. In reactions with iron(II), the predominant reaction course for 1,2-dioxolane 3a was two-electron reduction. In contrast, the corresponding 1,2,4-trioxolane 1 and the 1,2,4-trioxane artemisinin undergo primarily one-electron iron(II)-mediated reductions. The key structural element in the latter peroxides appears to be an oxygen atom attached to one or both of the peroxide-bearing carbon atoms that permits rapid beta-scission reactions (or H shifts) to form primary or secondary carbon-centered radicals rather than further reduction of the initially formed Fe(HI) complexed oxy radicals.
查看更多