[EN] TRANSDERMAL PENETRATION ENHANCERS<br/>[FR] ACTIVATEURS DE PENETRATION TRANSDERMIQUE
申请人:UNIV KARLOVA
公开号:WO2004074235A1
公开(公告)日:2004-09-02
The invention provides compounds based on ceramide analogues of the general the general formula (I), wherein R1= H or CH2OH; R2 = C8 to C16 alkyl; R3 = C7 to C15 alkyl, cis-heptadec-8-en-1-yl, CH(R1)NHCOR4, CH=CHCOOR4 or CH(OH)CH(OH)COOR4; R4 = C7 to C16 alkyl. The compounds of the general formula (I) are used as transdermal penetration enhancers. Pharmaceutical and cosmetic compositions, containing ceramide analogues of the general formula (I) in the amount from 0.1 to 5.0 w/w percent, preferably in the amount from 0.1 to 1.0 w/w percent.
Amphiphilic or lipophilic polar functionalized fullerenes and their uses
申请人:Zhou Zhiguo
公开号:US20080213324A1
公开(公告)日:2008-09-04
Described herein are synthetically modified fullerene molecules, wherein the fullerene is preferably ellipsoid in shape with an equatorial band and two opposing poles, comprising an adduct at one or both poles, at least one adduct being a hydrophobic chemical moiety capable of anchoring the fullerene on or in a lipid membrane.
Embodiments of the present invention provide for efficient methods and processes for preparing ionic amino acid esters from a specific synthesis route. The disclosed embodiments consist of a single reaction step: reacting a natural or synthetic unprotected amino acid with an aliphatic, branched or aromatic fatty alcohol of even or odd number of carbon atoms from 6 to 20 with or without unsaturation(s), in stoichiometric amounts, in the presence of an organic acid (HX) like carboxylate, mesylate, tosylate or sulfonate, employed as catalyst and under conventional heating (CC) of 1 to 3 hours at a temperature in the range of approximately 60 to 150° C. and pressure the range of approximately 0 to approximately 250 psi; the product obtained is cooled and recrystallized from ethanol.
Hydrophobically modified polypeptoids and uses thereof
申请人:BOARD OF SUPERVISORS OF LOUISIANA STATE UNIVERSITY AND AGRICULTURAL AND MECHANICAL COLLEGE
公开号:US11123433B2
公开(公告)日:2021-09-21
A variety of hydrophobically modified polypeptoids are provided. The hydrophobically modified polypeptoids can include a polyamide backbone having a random copolymer of two or more different types of repeat units, where one or more of the repeat units have nitrogen atom having a hydrophobic substituent attached thereto. Methods of making the hydrophobically modified polypeptoids are also provided, as well as uses of the hydrophobically modified polypeptoids, for example in liposomal drug delivery.
The study presents new information about the structure-activity relationships of the skin permeation enhancers. A series of ceramide analogues including eight different polar head groups and six different chain lengths was synthesised. The compounds were evaluated as permeation enhancers in vitro using porcine skin. The physico-chemical parameters of the tested compounds obtained by computer modelling were used to evaluate, by multiple linear regression, the enhancement ratios (ERs) of the compounds. The regression analysis suggests that the hydrogen bonding ability of the compounds is inversely related to the ER values and that the molecular size and lipophilicity must be well balanced. In the studied enhancers having the same chain length, the enhancement activity is dependent only on their permeability coefficients. This finding confirms the Warner's hypothesis that the polar head of an enhancer is responsible for the permeation and anchoring of the molecule into the stratum corneum lipids and that it does not influence the mechanism of action. For the specific action of enhancers, that is disordering of the intercellular lipid packing, the length of the hydrophobic chain(s) and not the lipophilicity is important. Furthermore, the examination of the FTIR spectra indicated that the most active substances possess the most ordered chains. The described relationships could bring more rational approaches in designing new potent enhancers for transdermal formulations. (C) 2003 Elsevier Ltd. All rights reserved.