The C-and N-terminal residues of synthetic heptapeptide ion channels influence transport efficacy through phospholipid bilayers
作者:Natasha Djedovi?、Riccardo Ferdani、Egan Harder、Jolanta Pajewska、Robert Pajewski、Michelle E. Weber、Paul H. Schlesinger、George W. Gokel
DOI:10.1039/b417091c
日期:——
The synthetic peptide, R2N-COCH2OCH2CO-Gly-Gly-Gly-Pro-Gly-Gly-Gly-OR′, was shown to be selective for Cl− over K+ when R is n-octadecyl and R′ is benzyl. Nineteen heptapeptides have now been prepared in which the N-terminal and C-terminal residues have been varied. All of the N-terminal residues are dialkyl but the C-terminal chains are esters, 2° amides, or 3° amides. The compounds having varied N-terminal anchors and C-terminal benzyl groups are as follows: 1, R =
n-propyl; 2, R =
n-hexyl; 3, R =
n-octyl; 4, R =
n-decyl; 5, R =
n-dodecyl; 6, R =
n-tetradecyl; 7, R =
n-hexadecyl; 8, R =
n-octadecyl. Compounds 9–19 have R =
n-octadecyl and C-terminal residues as follows: 9, OR′
= OCH2CH3; 10, OR′
= OCH(CH3)2; 11, OR′
= O(CH2)6CH3; 12, OR′
= OCH2–c-C6H11; 13, OR′
= O(CH2)9CH3; 14, OR′
= O(CH2)17CH3; 15, NR′2
= N[(CH2)6CH3]2; 16, NHR′
= NH(CH2)9CH3; 17, NR′2
= N[(CH2)9CH3]2; 18, NHR′
= NH(CH2)17CH3; 19, NR′2
= N[(CH2)17CH3]2. The highest anion transport activities were observed as follows. For the benzyl esters whose N-terminal residues were varied, i.e.1–8, compound 3 was most active. For the C18 anchored esters 10–14, n-heptyl ester 11 was most active. For the C18 anchored, C-terminal amides 15–19, di-n-decylamide 17 was most active. It was concluded that both the C-and N-terminal anchors were important for channel function in the bilayer but that activity was lost unless only one of the two anchoring groups was dominant.
合成肽R2N-COCH2OCH2CO-Gly-Gly-Gly-Pro-Gly-Gly-Gly-OR′在R为n-十八烷基且R′为苄基时,对Cl−相对于K+表现出选择性。目前已制备出十九种七肽,其中N端和C端残基有所不同。所有N端残基均为二烷基,而C端链为酯、二级酰胺或三级酰胺。N端锚和C端苄基不同的化合物如下:1,R = n-丙基;2,R = n-己基;3,R = n-戊基;4,R = n-癸基;5,R = n-十二烷基;6,R = n-十四烷基;7,R = n-十六烷基;8,R = n-十八烷基。化合物9–19中R = n-十八烷基,C端残基如下:9,OR′ = OCH2CH3;10,OR′ = OCH(CH3)2;11,OR′ = O(CH2)6CH3;12,OR′ = OCH2–c-C6H11;13,OR′ = O(CH2)9CH3;14,OR′ = O(CH2)17CH3;15,NR′2 = N[(CH2)6CH3]2;16,NHR′ = NH(CH2)9CH3;17,NR′2 = N[(CH2)9CH3]2;18,NHR′ = NH(CH2)17CH3;19,NR′2 = N[(CH2)17CH3]2。观察到的最高阴离子转运活性如下:对于N端残基变量的苄基酯,i.e.1–8,化合物3活性最强。对于C18锚定的酯10–14,n-庚基酯11活性最强。对于C18锚定的C端酰胺15–19,二-n-癸酰胺17活性最强。结论是C端和N端锚对双层膜中的通道功能十分重要,但只有其中一个锚定基团占主导时活性才存在。