The Rh(III)-catalyzed coupling of N-chloroimines with alkynes for the efficientsynthesis of isoquinolines is reported. This represents the first use of the N-Cl bond of N-chloroimines as an internal oxidant for construction of the isoquinoline skeleton. The synthesis features atom and step economy, a green solvent (EtOH), mild reaction conditions, and a broad substrate scope.2020 Elsevier Ltd. All
Redox-Neutral [4 + 2] Annulation of <i>N</i>-Methoxybenzamides with Alkynes Enabled by an Osmium(II)/HOAc Catalytic System
作者:Jian Yang、Liexin Wu、Huiying Xu、Hui Gao、Zhi Zhou、Wei Yi
DOI:10.1021/acs.orglett.9b03827
日期:2019.12.20
C-H activation strategy, an efficient osmium(II)-catalyzed redox-neutral [4 + 2] annulation of N-methoxybenzamides with alkynes has been accomplished. Computational and experimental studies revealed that such transformation leading to the synthesis of the isoquinolone core might follow an Os(II)-Os(IV)-Os(II) catalytic pathway, in which an unusual HOAc-assisted oxidative addition of osmium(II) into
Cp*-Free Cobalt-Catalyzed C–H Activation/Annulations by Traceless <i>N</i>,<i>O</i>-Bidentate Directing Group: Access to Isoquinolines
作者:Xiao-Cai Li、Cong Du、He Zhang、Jun-Long Niu、Mao-Ping Song
DOI:10.1021/acs.orglett.9b00866
日期:2019.4.19
N,O-Bidentate directing-enabled, traceless heterocycle synthesis is described via Cp*-free cobalt-catalyzedC–Hactivation/annulation. The weakly coordinating nature of the carboxylic acid was employed for the preparation of isoquinolines. Meanwhile, the N–Obond of the α-imino-oxy acid can serve as an internaloxidant. Terminal as well as internalalkynes can be efficiently applied to the catalytic
A rhodium-catalyzed sequential oxidativeC–H annulation reaction between ketazines and internal alkynes has been developed via C–H and N–N bond activation with air as an external oxidant, which led to an efficient approach toward isoquinolines with high atom efficiency at rt. Utilizing the distinctive reactivity of this catalysis, both N-atoms of the azines could be efficiently incorporated to the
Traceless heterocycle synthesis based on transition-metal-catalyzed C-H functionalization is synthetically appealing but has been realized only in monodentate directing systems. Bidentate directing systems allow for the achievement of high catalytic reactivity without the need for a high-cost privileged ligand. The first bidentate directing-enabled, traceless heterocycle synthesis is demonstrated in the