4,6-diaryl and 4,6-aryl-indolyl substituted 3-cyano-2-aminopyridines were synthesized and submitted to evaluation for their anti-inflammatory, analgesic and antipyretic activity. The electronegativity of the substituents and their displacement on the 4- or 6-aryl ring of the 4,6-diaryl-3-cyano-2-aminopyridine nucleus (3a-q) influenced the anti-inflammatory activity which was higher in the presence of electron-realising groups. The introduction of the indol-3-yl substituent in the 4-position of the 3-cyano-2-aminopyridine nucleus (6a-x) increased the anti-inflammatory and analgesic power, but there was no evidence of the relationship among the electronic characteristic of the substituents, their displacement on the 6-phenyl ring and the activity. Conversely, the displacement of the 2-hydroxyphenyl group in the 4-position (4a-e) and of the indol-3-yl group in the 6-position (8h-w) decreased the anti-inflammatory activity. All derivatives did not show any significative antipyretic activity. (C) Elsevier, Paris.
Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis
compounds against H37Rv strain of Mycobacteriumtuberculosis. Within this library of compounds, (E)-1-(furan-3-yl)-3-(1H-indol-3-yl)prop-2-en-1-one (18), (E)-3-(1H-indol-3-yl)-1-(thiophen-2-yl)prop-2-en-1-one (20) and (E)-2-((1H-indol-2-yl)methylene)cyclopentan-1-one (24) displayed high anti-tubercular activity at 50 μg/ml with MIC values of 210, 197 and 236 μM respectively. The in-silico studies revealed