Enhanced Hydride Donation Achieved Molybdenum Catalyzed Direct <i>N</i>-Alkylation of Anilines or Nitroarenes with Alcohols: From Computational Design to Experiment
作者:Weikang Li、Ming Huang、Jiahao Liu、Yong-Liang Huang、Xiao-Bing Lan、Zongren Ye、Cunyuan Zhao、Yan Liu、Zhuofeng Ke
DOI:10.1021/acscatal.1c02956
日期:2021.8.20
An example of homogeneous Mo-catalyzed direct N-alkylation of anilines or nitroarenes with alcohols is presented. The DFT aimed design suggested the easily accessible bis-NHC-Mo(0) complex features a strong hydride-donating ability, achieving effective N-alkylation of anilines or challenging nitroarenes with alcohols. The enhanced hydride-donating strategy should be useful in designing highly active
介绍了均相 Mo 催化的苯胺或硝基芳烃与醇的直接N-烷基化的例子。DFT 目标设计表明,易于获得的双-NHC-Mo(0) 配合物具有强大的氢化物供体能力,可实现苯胺的有效N-烷基化或用醇挑战硝基芳烃。增强的氢化物捐赠策略应该有助于设计用于借氢转化的高活性系统。
A nanoscale iron catalyst for heterogeneous direct <i>N</i>- and <i>C</i>-alkylations of anilines and ketones using alcohols under hydrogen autotransfer conditions
作者:Madhu Nallagangula、Chandragiri Sujatha、Venugopal T. Bhat、Kayambu Namitharan
DOI:10.1039/c9cc04120f
日期:——
report a commercially available nanoscale Fe catalyst for heterogeneous direct N- and C-alkylation reactions of anilines and methyl ketones with alcohols. A hydrogen autotransfer mechanism has been found to operate in these reactions by deuterium labelling studies. In addition, dehydrogenative quinoline synthesis has been demonstrated from amino benzyl alcohols and acetophenones.
Metal amidoboranes (MABs), such as lithium amidoborane (LiAB), show superior ability in reducing ketones and imines directly into their corresponding secondary alcohols and amines, respectively, at room temperature with high conversion and yields. A mechanistic study indicates that the reduction proceeds through a double‐hydrogen‐transfer process. Both protic H(N) and hydridic H(B) protons in the amidoborane
C-N Bond Formation Catalyzed by Ruthenium Nanoparticles Supported on N-Doped Carbon via Acceptorless Dehydrogenation to Secondary Amines, Imines, Benzimidazoles and Quinoxalines
作者:Bin Guo、Hong-Xi Li、Shi-Qi Zhang、David James Young、Jian-Ping Lang
DOI:10.1002/cctc.201801525
日期:2018.12.21
Ruthenium nanoparticles (NPs) supported on N‐doped carbon (Ru/N−C) were prepared by the pyrolysis of cis‐Ru(phen)2Cl2 loaded onto carbon powder (VULCAN XC72R) at 800 °C. Ru/N−C NPs (0.2 mol% Ru) selectively catalyzed either acceptorless dehydrogenation coupling (ADC) or auto‐transfer‐hydrogen (ATH) reactions of amines with alcohols to imines and secondary amines. Such selectivity could be controlled
Ruthenium(<scp>ii</scp>) complexes with N-heterocyclic carbene–phosphine ligands for the <i>N</i>-alkylation of amines with alcohols
作者:Ming Huang、Yinwu Li、Xiao-Bing Lan、Jiahao Liu、Cunyuan Zhao、Yan Liu、Zhuofeng Ke
DOI:10.1039/d1ob00362c
日期:——
A large variety of (hetero)aromatic amines and primary alcohols were efficiently converted into mono-N-alkylated amines in good to excellent isolated yields. Notably, aliphatic amines, challenging methanol and diamines could also be transformed into the desired products. Detailed control experiments and density functional theory (DFT) calculations provide insights to understand the mechanism and the