Conformationally Constrained Nicotines: Polycyclic, Bridged, and Spiro-Annulated Analogues as Novel Ligands for the Nicotinic Acetylcholine Receptor
摘要:
A set of novel nicotine-related, conformationally constrained compounds, including tetracyclic, bridged (4), and tricyclic, spiro-annulated (5) structures, were synthesized in a straightforward manner and optically resolved in a convenient fashion with (+)- and (-)-O,O'-di-p-toluoyltartaric acids. Absolute configurations were determined by X-ray crystallography. These compounds were evaluated for their ability to displace [H-3]cytisine in a rat forebrain preparation and compared to (-)-nicotine. Three substances emerged with high affinity in the low nanomolar range. Moreover, one of these compounds ((+)-5b) showed not only high binding affinity (K-i = 4.79 nM) but also significant enantioselectivity over its antipode (K-i = 148 nM), supporting the hypothesis that conformational restraint can lead to high-affinity ligands, which are stereochemically discriminated by the nicotinic acetylcholine receptor and may feature optimum locations of the active sites of the pharmacophore.
Conformationally Constrained Nicotines: Polycyclic, Bridged, and Spiro-Annulated Analogues as Novel Ligands for the Nicotinic Acetylcholine Receptor
摘要:
A set of novel nicotine-related, conformationally constrained compounds, including tetracyclic, bridged (4), and tricyclic, spiro-annulated (5) structures, were synthesized in a straightforward manner and optically resolved in a convenient fashion with (+)- and (-)-O,O'-di-p-toluoyltartaric acids. Absolute configurations were determined by X-ray crystallography. These compounds were evaluated for their ability to displace [H-3]cytisine in a rat forebrain preparation and compared to (-)-nicotine. Three substances emerged with high affinity in the low nanomolar range. Moreover, one of these compounds ((+)-5b) showed not only high binding affinity (K-i = 4.79 nM) but also significant enantioselectivity over its antipode (K-i = 148 nM), supporting the hypothesis that conformational restraint can lead to high-affinity ligands, which are stereochemically discriminated by the nicotinic acetylcholine receptor and may feature optimum locations of the active sites of the pharmacophore.
Catalytic Hydrogenation of Amides to Amines under Mild Conditions
作者:Mario Stein、Bernhard Breit
DOI:10.1002/anie.201207803
日期:2013.2.18
Under (not so much) pressure: A general method for the hydrogenation of tertiary and secondary amides to amines with excellent selectivity using a bimetallic Pd–Re catalyst has been developed. The reaction proceeds under low pressure and comparatively low temperature. This method provides organic chemists with a simple and reliable tool for the synthesis of amines.
Conformationally Constrained Nicotines: Polycyclic, Bridged, and Spiro-Annulated Analogues as Novel Ligands for the Nicotinic Acetylcholine Receptor
作者:Thomas Ullrich、Sylvia Krich、Dieter Binder、Kurt Mereiter、David J. Anderson、Michael D. Meyer、Michael Pyerin
DOI:10.1021/jm020916b
日期:2002.8.1
A set of novel nicotine-related, conformationally constrained compounds, including tetracyclic, bridged (4), and tricyclic, spiro-annulated (5) structures, were synthesized in a straightforward manner and optically resolved in a convenient fashion with (+)- and (-)-O,O'-di-p-toluoyltartaric acids. Absolute configurations were determined by X-ray crystallography. These compounds were evaluated for their ability to displace [H-3]cytisine in a rat forebrain preparation and compared to (-)-nicotine. Three substances emerged with high affinity in the low nanomolar range. Moreover, one of these compounds ((+)-5b) showed not only high binding affinity (K-i = 4.79 nM) but also significant enantioselectivity over its antipode (K-i = 148 nM), supporting the hypothesis that conformational restraint can lead to high-affinity ligands, which are stereochemically discriminated by the nicotinic acetylcholine receptor and may feature optimum locations of the active sites of the pharmacophore.