Chemoselective Phosphination of Titanacyclobutene: A Convenient Method for Synthesis of Allylphosphine Derivatives
作者:Yiqing Zhou、Chao Chen、Xiaoyu Yan、Chanjuan Xi
DOI:10.1021/om500084j
日期:2014.2.24
Titanacyclobutenes reacted with chlorophosphine to afford titanoallylphosphines with high chemoselectivity, and the resulting titanoallylphosphine could be converted into functionalized allylphosphine sulfides via reactions with various electrophiles.
first example of transition-metal-catalyzed C–H activations of 2-phenylisatogens with alkynes and sulfonyl azides has been developed using N-oxide as the directing group. Ru(II)-Catalyzed C–H alkenylation/cyclization and Ir(III)-catalyzed direct C–H sulfamidation proceeded with good yields and excellent functional group tolerance. Importantly, these two transformations provided straightforward routes
作者:Qi-Liang Yang、Yi-Kang Xing、Xiang-Yang Wang、Hong-Xing Ma、Xin-Jun Weng、Xiang Yang、Hai-Ming Guo、Tian-Sheng Mei
DOI:10.1021/jacs.9b11915
日期:2019.12.4
Synergistic use of electrochemistry and organometallic catalysis has emerged as a powerful tool for site-selective C-H functionalization, yet this type of transformation has thus far mainly been limited to arene C-H functionaliza-tion. Herein, we report the development of electrochemi-cal vinylic C-H functionalization of acrylic acids with al-kynes. In this reaction an iridium catalyst enables C-H/O-H
Alkynes react with organoborons under a CO atmosphere in the presence of a rhodium(I) catalyst to afford mainly 5-aryl-2(5H)-furanones, α,β-unsaturated ketones, and indanones. The product selectivity can be tuned by modifying the reaction conditions.
Electrochemically driven, Cp*Ir(III)-catalyzed regioselective annulative couplings of benzoicacids with alkynes have been established herein. The combination of iridium catalyst and electricity not only circumvents the need for stoichiometric amount of chemical oxidant, but also ensures broad reaction compatibility with a wide array of sterically and electronically diverse substrates. This electrochemical