Experimental and theoretical studies on Mannich-type reactions of chiral non-racemic N-(benzyloxyethyl) nitrones
摘要:
The nucleophilic addition of both silyl ketene acetals and lithium enolates derived from methyl acetate to chiral non-racemic N-(benzyloxyethyl)nitrones has been studied both experimentally and theoretically. Aromatic nitrones showed lower reactivity that aliphatic nitrones and the addition of the silyl ketene acetal led to lower selectivities than the addition of the corresponding lithium enolate. Whereas low selectivity was obtained for the addition of the silyl ketene acetal, only one diastereomer could be detected in all cases for the addition of lithium enolate to aliphatic nitrones. The synthetic utility of the two chiral auxiliaries employed lies in the preparation of enantiomeric compounds. DFT theoretical calculations confirmed the stepwise mechanism for the addition of silyl ketene acetals to nitrones and are in good agreement with the observed experimental results. (C) 2010 Elsevier Ltd. All rights reserved.
Experimental and theoretical studies on Mannich-type reactions of chiral non-racemic N-(benzyloxyethyl) nitrones
作者:Alba Diez-Martinez、Tomas Tejero、Pedro Merino
DOI:10.1016/j.tetasy.2010.12.004
日期:2010.12
The nucleophilic addition of both silyl ketene acetals and lithium enolates derived from methyl acetate to chiral non-racemic N-(benzyloxyethyl)nitrones has been studied both experimentally and theoretically. Aromatic nitrones showed lower reactivity that aliphatic nitrones and the addition of the silyl ketene acetal led to lower selectivities than the addition of the corresponding lithium enolate. Whereas low selectivity was obtained for the addition of the silyl ketene acetal, only one diastereomer could be detected in all cases for the addition of lithium enolate to aliphatic nitrones. The synthetic utility of the two chiral auxiliaries employed lies in the preparation of enantiomeric compounds. DFT theoretical calculations confirmed the stepwise mechanism for the addition of silyl ketene acetals to nitrones and are in good agreement with the observed experimental results. (C) 2010 Elsevier Ltd. All rights reserved.