摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2,2,2-trifluoro-N,1-diphenylethan-1-imine | 37772-00-2

中文名称
——
中文别名
——
英文名称
2,2,2-trifluoro-N,1-diphenylethan-1-imine
英文别名
2,2,2-Trifluoro-N,1-diphenylethanimine
2,2,2-trifluoro-N,1-diphenylethan-1-imine化学式
CAS
37772-00-2
化学式
C14H10F3N
mdl
——
分子量
249.235
InChiKey
WOGGGKUXOZTMID-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    248.5±40.0 °C(Predicted)
  • 密度:
    1.13±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    4.6
  • 重原子数:
    18
  • 可旋转键数:
    2
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.07
  • 拓扑面积:
    12.4
  • 氢给体数:
    0
  • 氢受体数:
    4

反应信息

  • 作为反应物:
    描述:
    2,2,2-trifluoro-N,1-diphenylethan-1-imine 在 sodium formate 作用下, 以 为溶剂, 反应 18.0h, 以95%的产率得到(S)-N-(2,2,2-trifluoro-1-phenylethyl)aniline
    参考文献:
    名称:
    两亲性超支化聚乙氧基硅氧烷:一种自模板组装平台,用于制备功能性介孔结构二氧化硅,用于水对映选择性反应
    摘要:
    作为非均相催化剂的两亲介观结构的二氧化硅的制备由于其在水中的高度分散性而有利于促进水反应。在这项工作中,通过利用自模板组装策略的优势,我们通过使用两亲性聚(乙二醇)单甲醚改性的超支化聚乙氧基硅氧烷作为二氧化硅前体。如研究中所述,手性钌/二胺官能化催化剂在水中将无环α-三氟甲基亚胺进行不对称转移氢化成手性α-三氟甲胺,而手性方酰胺功能化的催化剂能够将乙酰丙酮高效不对称地迈克尔加成到盐水中的硝基烯烃上。两种高催化性能均归因于明确定义的单中心手性活性物种,高度分散的催化中心和实用的相转移功能的组合多功能性。此外,两种催化剂也可以容易地回收并重复使用至少七次而不会损失催化活性。这样的特征使得该自模板组件对于构造各种非均相催化剂具有吸引力。和实用的相转移功能。此外,两种催化剂也可以容易地回收并重复使用至少七次而不会损失催化活性。这样的特征使得该自模板组件对于构造各种非均相催化剂具有吸引力。和实用的相
    DOI:
    10.1021/acscatal.6b01315
  • 作为产物:
    描述:
    叠氮苯乙醚 为溶剂, 反应 2.0h, 生成 2,2,2-trifluoro-N,1-diphenylethan-1-imine
    参考文献:
    名称:
    Acyclic amides as estrogen receptor ligands: Synthesis, binding, activity and receptor interaction
    摘要:
    We have prepared a series of bisphenolic amides that mimic bibenzyl and homobibenzyl motifs commonly found as substructures in ligands for the estrogen receptor (ER). Representative members were prepared from three classes: N-phenyl benzamides, N-phenyl acetamides, and N-benzyl benzamides; in some cases the corresponding thiocarboxamides and sulfonamides were also prepared. Of these three classes, the N-phenyl benzamides had the highest affinity for ER, the N-phenyl acetamides had lower, and the N-benzyl benzamides were prone to fragmentation via a quinone methide intermediate. In the N-phenyl benzamide series, the highest affinity analogues had bulky N-substituents; a CF3 group, in particular, conferred high affinity. The thiocarboxamides bound better than the corresponding carboxamides and these bound better than the corresponding sulfonamides. Binding affinity comparisons suggest that the p-hydroxy group on the benzoate ring, which contributes most to the binding, is playing the role of the phenolic hydroxyl of estradiol. Computational studies and NMR and X-ray crystallographic analysis indicate that the two anilide systems studied have a strong preference for the s-cis or exo amide conformation, which places the two aromatic rings in a syn orientation. We used this structural template. together with the X-ray structure of the ER ligand binding domain, to elaborate an additional hydrogen bonding site on a benzamide system that elevated receptor binding further. When assayed on the individual ER subtypes, ER alpha and ER beta, these compounds show modest binding affinity preference for ER alpha. In a reporter gene transfection assay of transcriptional activity, the amides generally have full to nearly full agonist character on ERa, but have moderate to full antagonist character on ER beta. One high affinity carboxamide is 500-fold more potent as an agonist on ER alpha than on ER beta. This work illustrates that ER ligands having simple amide core structures can be readily prepared, but that high affinity binding requires an appropriate distribution of bulk, polarity, and functionality. The strong conformational preference of the core anilide function in all of these ligands defines a rather rigid geometry for further structural and functional expansion of these series. (C) 2000 Elsevier Science Ltd. All rights reserved.
    DOI:
    10.1016/s0968-0896(00)00075-4
点击查看最新优质反应信息

文献信息

  • H <sub>2</sub> Activation by Non‐Transition‐Metal Systems: Hydrogenation of Aldimines and Ketimines with LiN(SiMe <sub>3</sub> ) <sub>2</sub>
    作者:Daniel C. Elliott、Alex Marti、Pablo Mauleón、Andreas Pfaltz
    DOI:10.1002/chem.201805549
    日期:2019.2.6
    In recent years, H2 activation at non‐transitionmetal centers has met with increasing attention. Here, a system in which H2 is activated and transferred to aldimines and ketimines using substoichiometric amounts of lithium bis(trimethylsilyl)amide is reported. Notably, the reaction tolerates the presence of acidic protons in the α‐position. Mechanistic investigations indicated that the reaction proceeds
    近年来,非过渡金属中心的H 2活化受到越来越多的关注。在此,报道了使用亚化学计量的双(三甲基甲硅烷基)氨基锂将H 2活化并转移至醛亚胺和酮亚胺的系统。值得注意的是,该反应可耐受α位酸性质子的存在。机理研究表明,反应通过氢化锂中间体作为实际的还原剂进行。
  • Rhodium-Catalyzed C═N Bond Formation through a Rebound Hydrolysis Mechanism and Application in β-Lactam Synthesis
    作者:Long Chen、Linxing Zhang、Ying Shao、Guangyang Xu、Xinhao Zhang、Shengbiao Tang、Jiangtao Sun
    DOI:10.1021/acs.orglett.9b01312
    日期:2019.6.7
    this transformation proceeds via a novel rebound hydrolysis mechanism. Furthermore, a three-component reaction was explored to synthesize highly functionalized β-lactams in good yields and diastereoselectivities.
    开发了铑催化的N-羟基苯胺与重氮化合物反应生成α-亚氨基酯的方法。与通常的X–H插入反应通常接受的1,2-H转移不同,密度泛函理论计算表明这种转变是通过新型的反弹水解机理进行的。此外,研究了三组分反应以高产率和非对映选择性合成高度官能化的β-内酰胺。
  • Synthesis of Aziridines by Palladium-Catalyzed Reactions of Allylamines with Aryl and Alkenyl Halides: Evidence of a<i>syn</i>-Carboamination Pathway
    作者:Sayuri Hayashi、Hideki Yorimitsu、Koichiro Oshima
    DOI:10.1002/anie.200903178
    日期:2009.9.14
    rings: Treatment of N‐arylallylamine with an aryl or alkenyl halide under palladium catalysis (see scheme; dba=dibenzylideneacetone, SPhos=2‐dicyclohexylphosphanyl‐2′,6′‐dimethoxybiphenyl) resulted in intramolecular cyclization to form the arylmethyl‐substituted aziridine with concomitant CC bond formation. The experiments for the elucidation of the reaction mechanism are also described.
    疯狂的环:在钯催化下用芳基或烯基卤化物处理N-芳基烯丙胺(参见方案; dba =二亚苄基丙酮,SPhos = 2-二环己基膦基-2',6'-二甲氧基联苯)导致分子内环化形成芳基甲基取代的氮丙啶伴随有CC键的形成。还描述了阐明反应机理的实验。
  • Synthesis of N-substituted α,α-difluoro-β-aminophosphonates by addition of diethyl lithiodifluoromethylphosphonate to imines
    作者:Prabhakar Cherkupally、Petr Beier
    DOI:10.1016/j.jfluchem.2012.06.004
    日期:2012.9
    Addition of diethyl lithiodifluoromethylphosphonate to N-substituted imines provides N-substituted α,α-difluoro-β-aminophosphonates. N-Alkyl, aryl, or Boc substituted aldimines give good to high yields in these reactions, while in ketimine series, only activated N-(2,2,2-trifluoro-1-phenylethylidene)aniline showed high reactivity.
    将二乙基硫代二氟甲基膦酸酯加到N-取代的亚胺上,得到N-取代的α,α-二氟-β-氨基膦酸酯。在这些反应中,N-烷基,芳基或Boc取代的亚胺具有良好的高收率,而在酮亚胺系列中,只有活化的N-(2,2,2-三氟-1-苯乙叉基)苯胺显示出高反应活性。
  • Photoredox-Catalyzed Synthesis of α-Amino Acid Amides by Imine Carbamoylation
    作者:Luana Cardinale、Mattis-Ole W. S. Schmotz、Mikhail O. Konev、Axel Jacobi von Wangelin
    DOI:10.1021/acs.orglett.1c03908
    日期:2022.1.21
    An operationally simple protocol for the photocatalytic carbamoylation of imines is reported. Easily available, bench-stable 4-amido Hantzsch ester derivatives serve as precursors to carbamoyl radicals that undergo rapid addition to N-aryl imines. The reaction proceeds under blue light irradiation in the presence of the photocatalyst 3DPAFIPN and Brønsted/Lewis acid additives. Mechanistic studies indicated
    报道了一种操作简单的亚胺光催化氨基甲酰化方案。易于获得、实验室稳定的 4-酰胺基 Hantzsch 酯衍生物可作为氨基甲酰基自由基的前体,快速加成至N-芳基亚胺上。该反应在蓝光照射下、光催化剂 3DPAFIPN 和布朗斯特/路易斯酸添加剂的存在下进行。机理研究表明光氧化还原机制涉及氨基甲酰基自由基。
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
ir
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐