抗生素耐药性发生率的增加迫使人们开发出具有新颖多靶点机制的独特抗菌药物,以对抗由多重耐药病原体引起的传染病。结构独特的吲哚氰乙烯磺酰苯胺(IS)被开发为新型有前景的抗菌剂来对抗顽固的耐药性。一些制备的 IS 对测试细菌具有良好的抑菌作用。尤其是,羟乙基IS 14a对多重耐药鲍曼不动杆菌和大肠杆菌25922的抑制效果比诺氟沙星低8倍,MIC仅为0.5 μg/mL ,且具有低细胞毒性和快速杀菌特性。此外,该化合物还具有明显的消灭细菌生物膜的作用,可以有效缓解耐药性的产生。抗菌机制的初步评估表明,化合物14a可以破坏细胞膜完整性,导致细胞内蛋白质渗漏、乳酸脱氢酶失活和代谢抑制。羟乙基IS 14a介导过量活性氧的积累,进一步导致谷胱甘肽减少,导致细菌氧化损伤。此外,IS 14a可以嵌入 DNA 中,阻碍 DNA 的生物学功能。量子化学研究表明,能隙最低的IS 14a有利于表现出高生物活性。这些发现表明,羟乙基
Development of Second-Generation Indole-Based Dynamin GTPase Inhibitors
作者:Christopher P. Gordon、Barbara Venn-Brown、Mark J. Robertson、Kelly A. Young、Ngoc Chau、Anna Mariana、Ainslie Whiting、Megan Chircop、Phillip J. Robinson、Adam McCluskey
DOI:10.1021/jm300844m
日期:2013.1.10
Focused library development of our lead 2-cyano-3-(1-(3-(dimethylamino)-propyl)-2-methyl-1H-indol-3-yl)-N-octylacrylamide (2) confirmed the tertiary dimethylamino-propyl moiety as critical for inhibition of dynamin GTPase. The cyanoamide moiety could be replaced with a thiazole-4(5H)-one isostere (19, IC50(dyn I) = 7.7 mu M), reduced under flow chemistry conditions (20, IC50(dyn I) = 5.2 mu M) or replaced by a simple amine. The latter provided a basis for a high yield library of compounds via a reductive amination by flow hydrogenation. Two compounds, 24 (IC50(dyn I) = 0.56 mu M) and 25 (IC50(dyn I) = 0.76 mu M), stood out. Indole 24 is nontoxic and showed increased potency against dynamin I and II in vitro and in cells (IC50(CME) = 1.9 mu M). It also showed 4.4-fold selectivity for dynamin I. The indole 24 compound has improved isoform selectivity and is the most active in-cell inhibitor of clathrin-mediated endocytosis reported to date.