摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-Hydroxypyrazine-2-carbonyl chloride | 1261490-22-5

中文名称
——
中文别名
——
英文名称
5-Hydroxypyrazine-2-carbonyl chloride
英文别名
6-oxo-1H-pyrazine-3-carbonyl chloride
5-Hydroxypyrazine-2-carbonyl chloride化学式
CAS
1261490-22-5
化学式
C5H3ClN2O2
mdl
——
分子量
158.544
InChiKey
MUNVJTRQLHOCAY-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0
  • 重原子数:
    10
  • 可旋转键数:
    1
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    58.5
  • 氢给体数:
    1
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    5-Hydroxypyrazine-2-carbonyl chloride 在 sodium tetrahydroborate 作用下, 以 1,4-二氧六环 为溶剂, 以2.18 g的产率得到(5-氯吡嗪-2-基)甲醇
    参考文献:
    名称:
    Synthesis and Structure−Activity Relationships of Aza- and Diazabiphenyl Analogues of the Antitubercular Drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824)
    摘要:
    New heterocyclic analogues of the potent biphenyl class derived from antitubercular drug PA-824 were prepared, aiming to improve aqueous solubility but maintain high metabolic stability and efficacy. The strategy involved replacement of one or both phenyl groups by pyridine, pyridazine, pyrazine, or pyrimidine, in order to reduce lipophilicity. For para-linked biaryls, hydrophilicities (ClogP) correlated with measured solubilities, but highly soluble bipyridine analogues displayed weak antitubercular activities. A terminal pyridine or proximal heterocycle allowed retention of potency and provided solubility improvements, particularly at low pH, with examples from the latter classes displaying the better in vivo efficacies, high metabolic stabilities, and excellent pharmacokinetics. Five such compounds were >100-fold better than the parent drug in a mouse model of acute Mycobacterium tuberculosis infection, and two orally bioavailable pyridine analogues (3-4-fold more soluble than the parent at low pH) were superior to antitubercular drug OPC-67683 in a chronic infection model.
    DOI:
    10.1021/jm101288t
  • 作为产物:
    参考文献:
    名称:
    Synthesis and Structure−Activity Relationships of Aza- and Diazabiphenyl Analogues of the Antitubercular Drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824)
    摘要:
    New heterocyclic analogues of the potent biphenyl class derived from antitubercular drug PA-824 were prepared, aiming to improve aqueous solubility but maintain high metabolic stability and efficacy. The strategy involved replacement of one or both phenyl groups by pyridine, pyridazine, pyrazine, or pyrimidine, in order to reduce lipophilicity. For para-linked biaryls, hydrophilicities (ClogP) correlated with measured solubilities, but highly soluble bipyridine analogues displayed weak antitubercular activities. A terminal pyridine or proximal heterocycle allowed retention of potency and provided solubility improvements, particularly at low pH, with examples from the latter classes displaying the better in vivo efficacies, high metabolic stabilities, and excellent pharmacokinetics. Five such compounds were >100-fold better than the parent drug in a mouse model of acute Mycobacterium tuberculosis infection, and two orally bioavailable pyridine analogues (3-4-fold more soluble than the parent at low pH) were superior to antitubercular drug OPC-67683 in a chronic infection model.
    DOI:
    10.1021/jm101288t
点击查看最新优质反应信息

文献信息

  • Synthesis and Structure−Activity Relationships of Aza- and Diazabiphenyl Analogues of the Antitubercular Drug (6<i>S</i>)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5<i>H</i>-imidazo[2,1-<i>b</i>][1,3]oxazine (PA-824)
    作者:Iveta Kmentova、Hamish S. Sutherland、Brian D. Palmer、Adrian Blaser、Scott G. Franzblau、Baojie Wan、Yuehong Wang、Zhenkun Ma、William A. Denny、Andrew M. Thompson
    DOI:10.1021/jm101288t
    日期:2010.12.9
    New heterocyclic analogues of the potent biphenyl class derived from antitubercular drug PA-824 were prepared, aiming to improve aqueous solubility but maintain high metabolic stability and efficacy. The strategy involved replacement of one or both phenyl groups by pyridine, pyridazine, pyrazine, or pyrimidine, in order to reduce lipophilicity. For para-linked biaryls, hydrophilicities (ClogP) correlated with measured solubilities, but highly soluble bipyridine analogues displayed weak antitubercular activities. A terminal pyridine or proximal heterocycle allowed retention of potency and provided solubility improvements, particularly at low pH, with examples from the latter classes displaying the better in vivo efficacies, high metabolic stabilities, and excellent pharmacokinetics. Five such compounds were >100-fold better than the parent drug in a mouse model of acute Mycobacterium tuberculosis infection, and two orally bioavailable pyridine analogues (3-4-fold more soluble than the parent at low pH) were superior to antitubercular drug OPC-67683 in a chronic infection model.
查看更多