A Stereospecific Access to Allylic Systems Using Rhodium(II)−Vinyl Carbenoid Insertion into Si−H, O−H, and N−H Bonds
摘要:
Rhodium-catalyzed decomposition of alpha-vinyldiazoesters in the presence of silanes, alcohols, ethers, amines, and thiols have been shown to produce the corresponding alpha-silyl, alpha-hydroxy, alpha-alkoxy, alpha-amino, and alpha-thioalkoxy esters in generally good yield with a complete retention of the stereochemistry of the double bond of the diazo precursor. An extension of the process in homochiral series has also been devised using either a chiral auxiliary attached to the ester function or achiral alpha-vinyldiazoesters and Doyle's chiral catalyst Rh-2(MEPY)(4). In the former approach, pantolactone as chiral auxiliary gave diastereoselectivities of up to 70%, while the second approach produced the desired allylsilane with ee as high as 72%. On the other hand, Rh-2(MEPY)(4)-catalyzed insertion into the O-H bond of water led to poor or no enantioselectivity in good agreement with recent literature reports.
Rhodium-catalyzed decomposition of alpha-vinyldiazoesters in the presence of silanes, alcohols, ethers, amines, and thiols have been shown to produce the corresponding alpha-silyl, alpha-hydroxy, alpha-alkoxy, alpha-amino, and alpha-thioalkoxy esters in generally good yield with a complete retention of the stereochemistry of the double bond of the diazo precursor. An extension of the process in homochiral series has also been devised using either a chiral auxiliary attached to the ester function or achiral alpha-vinyldiazoesters and Doyle's chiral catalyst Rh-2(MEPY)(4). In the former approach, pantolactone as chiral auxiliary gave diastereoselectivities of up to 70%, while the second approach produced the desired allylsilane with ee as high as 72%. On the other hand, Rh-2(MEPY)(4)-catalyzed insertion into the O-H bond of water led to poor or no enantioselectivity in good agreement with recent literature reports.
Studies on the Mercury-Desilylation of Chiral Cyclopropylmethylsilanes - A Stereocontrolled Access to Carba-Sugars
Mercury-desilylation of cyclopropylmethylsilanes affords a stereospecific access to homoallylic mercury intermediates, which can be elaborated further. This strategy is illustrated with a short access to carba-furanoses and carba-C-disaccharides.