摘要:
N5-Acetyl-N5-hydroxy-L-ornithine (1), the key constituent of several microbial siderophores, has been synthesized in 23 % yield overall from N-Cbz-L-glutamic acid 1-tert-butyl ester (6) derived from L-glutamic acid. Reduction of 6 to 7 and treatment with N-[(trichloroethoxy)carbonyl]-O-benzylhydroxylamine (8), and diethyl azodicarboxylate and triphenylphosphine followed by deprotection produced the protected N5-acetyl-N5-hydroxy-L-ornithine derivatives 11 and 12 in large quantities (10-20 g). Following alpha-amino and alpha-carboxyl deprotections of 11 and 12, EEDQ [2-ethoxy-N-(ethoxycarbonyl)-1,2-dihydroquinoline] mediated peptide coupling and final deprotection provided amino acid 1 and six albomycin-like peptides (20, 23, 25, 28, 35, and 36). The growth-promoting ability of each was evaluated with the siderophore biosynthesis mutant Shigella flexneri SA240 (SA 100 iucD:Tn5). These results indicate that substantial modification of the framework of peptide-based siderophores can be tolerated by microbial iron-transport systems.