[EN] ASYMMETRIC ELECTROPHILIC FLUORINATION USING AN ANIONIC CHIRAL PHASE-TRANSFER CATALYST [FR] FLUORATION ÉLECTROPHILE ASYMÉTRIQUE UTILISANT UN CATALYSEUR DE TRANSFERT DE PHASE CHIRAL ANIONIQUE
ASYMMETRIC ELECTROPHILIC FLUORINATION USING AN ANIONIC CHIRAL PHASE-TRANSFER CATALYST
申请人:THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
公开号:US20140350253A1
公开(公告)日:2014-11-27
The discovery of distinct modes of asymmetric catalysis has the potential to rapidly advance chemists' ability to build enantioenriched molecules. As an example, the use of chiral cation salts as phase-transfer catalysts for anionic reagents has enabled a vast set of enantioselective transformations. A largely overlooked analogous mechanism wherein a chiral anionic catalyst brings a cationic species into solution is itself a powerful method. The concept is broadly applicable to a number of different reaction pathways, including to the enantioselective fluorocyclization of olefins, and dearomatization of aromatic systems with a cationic electrophile-transferring (e.g., fluorinating) agent and a chiral phosphate catalyst. The reactions proceed in high yield and stereoselectivity. The compounds and methods of the invention are of particular value, especially considering the scarcity of alternative approaches.
Decarboxylative Enamide Synthesis from Carboxylic Acid and Alkenyl Isocyanate
作者:Rui Wang、Wenbo H. Liu
DOI:10.1021/acs.orglett.3c01682
日期:2023.7.21
protocol to access the enamide via employing carboxylic acid and alkenyl isocyanate as the precursors promoted by DMAP without involving any metal catalysts and dehydration reagents. This protocol is simple and practical and tolerates numerous functional groups. Considering the simplicity, the ready availability of both starting materials, and the significance of the enamides, we expect that this reaction
[EN] ASYMMETRIC ELECTROPHILIC FLUORINATION USING AN ANIONIC CHIRAL PHASE-TRANSFER CATALYST<br/>[FR] FLUORATION ÉLECTROPHILE ASYMÉTRIQUE UTILISANT UN CATALYSEUR DE TRANSFERT DE PHASE CHIRAL ANIONIQUE
申请人:UNIV CALIFORNIA
公开号:WO2013096971A1
公开(公告)日:2013-06-27
The discovery of distinct modes of asymmetric catalysis has the potential to rapidly advance chemists' ability to build enantioenriched molecules. As an example, the use of chiral cation salts as phase-transfer catalysts for anionic reagents has enabled a vast set of enantioselective transformations. A largely overlooked analogous mechanism wherein a chiral anionic catalyst brings a cationic species into solution is itself a powerful method. The concept is broadly applicable to a number of different reaction pathways, including to the enantioselective fluorocyclization of olefins, and dearomatization of aromatic systems with a cationic electrophile-transferring (e.g., fluorinating) agent and a chiral phosphate catalyst. The reactions proceed in high yield and stereoselectivity. The compounds and methods of the invention are of particular value, especially considering the scarcity of alternative approaches.