New Catalysts for the Base-Promoted Isomerization of Epoxides to Allylic Alcohols. Broadened Scope and Near-Perfect Asymmetric Induction
摘要:
Optically active (1S,3R,4R)-3-[N-(trans-2,5-dialkyl)pyrrolidinyl]methyl-2-azabicyclo-[2.2.1]heptanes were evaluated as catalysts for the enantioselective beta-elimination of meso-epoxides. The (2R,5R)-dimethylpyrrolidinyl-substituted catalyst 4 exhibited exceptionally high enantioselectivity and reactivity, and several substrates were rearranged with enantioselectivities of 98-99% ee. In addition, the use of 4 allowed the first successful, true catalytic rearrangement of the difficult substrates cyclopentene oxide (81%, 96% ee) and (Z)-4-octene oxide (80%, 91% ee).
New Catalysts for the Base-Promoted Isomerization of Epoxides to Allylic Alcohols. Broadened Scope and Near-Perfect Asymmetric Induction
摘要:
Optically active (1S,3R,4R)-3-[N-(trans-2,5-dialkyl)pyrrolidinyl]methyl-2-azabicyclo-[2.2.1]heptanes were evaluated as catalysts for the enantioselective beta-elimination of meso-epoxides. The (2R,5R)-dimethylpyrrolidinyl-substituted catalyst 4 exhibited exceptionally high enantioselectivity and reactivity, and several substrates were rearranged with enantioselectivities of 98-99% ee. In addition, the use of 4 allowed the first successful, true catalytic rearrangement of the difficult substrates cyclopentene oxide (81%, 96% ee) and (Z)-4-octene oxide (80%, 91% ee).
New Catalysts for the Base-Promoted Isomerization of Epoxides to Allylic Alcohols. Broadened Scope and Near-Perfect Asymmetric Induction
作者:Sophie K. Bertilsson、Mikael J. Södergren、Pher G. Andersson
DOI:10.1021/jo010934l
日期:2002.3.1
Optically active (1S,3R,4R)-3-[N-(trans-2,5-dialkyl)pyrrolidinyl]methyl-2-azabicyclo-[2.2.1]heptanes were evaluated as catalysts for the enantioselective beta-elimination of meso-epoxides. The (2R,5R)-dimethylpyrrolidinyl-substituted catalyst 4 exhibited exceptionally high enantioselectivity and reactivity, and several substrates were rearranged with enantioselectivities of 98-99% ee. In addition, the use of 4 allowed the first successful, true catalytic rearrangement of the difficult substrates cyclopentene oxide (81%, 96% ee) and (Z)-4-octene oxide (80%, 91% ee).