Enzyme-mediated enantioselective hydrolysis of poly(ethylene glycol)-supported carbonates
摘要:
Kinetic resolution of poly(ethylene glycol)(PEG)-supported carbonates by enzymatic hydrolysis is discussed. Water-soluble carbonates are prepared by immobilization of racemic secondary alcohols onto low-molecular weight monomethoxy PEG (MPEG) through a carbonate linker. Porcine pancreas lipase (PPL) enantioselectively catalyzes the hydrolysis of the substrates to give optically active compounds. In this system, the separation of the resulting alcohols and the remaining substrates is achieved by an extraction process without laborious column chromatography. The carbonates are easily hydrolyzed with K2CO3 to afford the corresponding alcohols. (C) 2004 Elsevier Ltd. All rights reserved.
Kinetic resolution of poly(ethylene glycol)(PEG)-supported carbonates by enzymatic hydrolysis is discussed. Water-soluble carbonates are prepared by immobilization of racemic secondary alcohols onto low-molecular weight monomethoxy PEG (MPEG) through a carbonate linker. Porcine pancreas lipase (PPL) enantioselectively catalyzes the hydrolysis of the substrates to give optically active compounds. In this system, the separation of the resulting alcohols and the remaining substrates is achieved by an extraction process without laborious column chromatography. The carbonates are easily hydrolyzed with K2CO3 to afford the corresponding alcohols. (C) 2004 Elsevier Ltd. All rights reserved.
Kinetic resolution of poly(ethylene glycol)-supported carbonates by enzymatic hydrolysis
The enzyme-mediated enantioselective hydrolysis of poly(ethylene glycol) (PEG)-supported carbonates is disclosed. The water-soluble carbonates were prepared by immobilization of a racemic secondary alcohol (4-benzyloxy-2-butanol) onto low-molecular weight (av MW 550 and 750) monometboxy PEG through a carbonate linker. For the screening of the hydrolytic enzymes, the substrate was enantioselectively hydrolyzed by commercially available lipase from porcine pancreas (PPL; Type II, Sigma) to afford the optically active compounds. In this system, the separation of the remaining (S)-substrate and the resulting (R)-alcohol was achieved by an extraction process without a laborious column chromatography. The (S)-carbonate was easily hydrolyzed with K2CO3 to afford the corresponding (S)-alcohol. Other MPEG-supported substrates were also hydrolyzed to afford the corresponding optically active alcohols. (c) 2006 Elsevier Ltd. All rights reserved.