被称为葡萄糖硫醇苷的防御相关植物代谢物在农业、生态和人类健康中都扮演着重要角色。尽管对葡萄糖硫醇苷途径的生物化学理解已经很先进,但核心葡萄糖硫醇苷结构中还原硫原子的来源仍然未知。最近的证据指出了GSH,这将需要进一步涉及GSH结合物处理酶。在本文中,我们展示了一种Arabidopsis thaliana突变体,其生产γ-谷氨酰肽酶GGP1和GGP3受损,其葡萄糖硫醇苷水平发生改变,并积累了多达10个相关的GSH结合物。我们还展示了双突变体在产生卡马雷辛方面存在障碍,并在诱导后积累高量的卡马雷辛中间体GS-IAN。此外,我们证明了GGP1和GGP3的细胞和亚细胞定位与已知的葡萄糖硫醇苷和卡马雷辛酶相匹配。最后,我们展示了纯化的重组GGP能够代谢至少10个与葡萄糖硫醇苷相关的GSH结合物以及GS-IAN。我们的结果表明,GSH是葡萄糖硫醇苷生物合成中的硫供体,并为唯一已知的细胞质植物γ-谷氨酰肽酶建立了在体功能,即处理葡萄糖硫醇苷和卡马雷辛途径中的GSH结合物。
In the glucosinolate pathway, the postoxime enzymes have been proposed to have low specificity for the side chain and high specificity for the functional group. Here, we provide biochemical evidence for the functional role of the two cytochromes P450, CYP83A1 and CYP83B1, from Arabidopsis in oxime metabolism in the biosynthesis of glucosinolates. In a detailed analysis of the substrate specificities of the recombinant enzymes heterologously expressed in yeast (Saccharomyces cerevisiae), we show that aliphatic oximes derived from chain-elongated homologs of methionine are efficiently metabolized by CYP83A1, whereas CYP83B1 metabolizes these substrates with very low efficiency. Aromatic oximes derived from phenylalanine, tryptophan, and tyrosine are metabolized by both enzymes, although CYP83B1 has higher affinity for these substrates than CYP83A1, particularly in the case of indole-3-acetaldoxime, where there is a 50-fold difference in K m value. The data show that CYP83A1 and CYP83B1 are nonredundant enzymes under physiologically normal conditions in the plant. The ability of CYP83A1 to metabolize aromatic oximes, albeit at small levels, explains the presence of indole glucosinolates at various levels in different developmental stages of the CYP83B1 knockout mutant, rnt1-1. Plants overexpressing CYP83B1 contain elevated levels of aliphatic glucosinolates derived from methionine homologs, whereas the level of indole glucosinolates is almost constant in the overexpressing lines. Together with the previous characterization of the members of the CYP79 family involved in oxime production, this work provides a framework for metabolic engineering of glucosinolates and for further dissection of the glucosinolate pathway.
在葡萄糖苷硫酸酯途径中,后羟肟酶被认为对侧链具有低特异性,对功能团具有高特异性。在这里,我们提供了来自拟南芥的两种细胞色素P450,CYP83A1和CYP83B1,在葡萄糖苷硫酸酯生物合成中对肟代谢的功能作用的生化证据。通过对在酵母(酿酒酵母)中异源表达的重组酶的底物特异性的详细分析,我们展示了由甲硫氨酸链延长同源体衍生的脂肪族肟由CYP83A1高效代谢,而CYP83B1对这些底物的代谢效率非常低。来自苯丙氨酸、色氨酸和酪氨酸的芳香族肟由两种酶代谢,尽管CYP83B1对这些底物具有更高的亲和力,特别是对于吲哚-3-乙醛肟而言,K m 值之间存在50倍的差异。数据表明,在植物的生理正常条件下,CYP83A1和CYP83B1是非冗余的酶。CYP83A1代谢芳香族肟的能力,虽然水平较低,但解释了CYP83B1敲除突变体rnt1-1在不同发育阶段存在各种水平的吲哚型葡萄糖苷硫酸酯的存在。过表达CYP83B1的植物含有由甲硫氨酸同源体衍生的脂肪族葡萄糖苷硫酸酯的升高水平,而过表达系列中吲哚型葡萄糖苷硫酸酯的水平几乎保持不变。结合前面对参与肟生产的CYP79家族成员的表征,这项工作为葡萄糖苷硫酸酯的代谢工程提供了一个框架,并进一步解析了葡萄糖苷硫酸酯途径。