Molecular Design of Free Volume as a Route to Low-κ Dielectric Materials
摘要:
Polymers incorporating the triptycene subunit were prepared for the molecular-level design of low dielectric constant (low-kappa) materials that can be used to manufacture faster integrated circuits. Triptycenes having restricted rotation by multiple point attachment to the polymer backbone are shown to introduce free volume into the films, thereby lowering their dielectric constants. The triptycene containing polymers exhibit a number of desirable properties including low-water absorption and high thermal stability. Systematic studies wherein comparisons are made between two separate classes of triptycene polymers and their non-triptycene containing analogues demonstrate that proper insertion of triptycenes into a polymer backbone can give rise to a reduction in the material's dielectric constant while also improving its mechanical properties. These characteristics are desired by the semiconductor industry for the next generation of microprocessors and memory to provide insulation of the increasingly shrinking features.
Shape-persistent organic materials, including polymers, with large degrees of interior free volume are described, along with behaviors and phenomena enabled by their unique properties. One class of such a material is built up from triptycene base moieties wherein three benzene rings are bridged together about a [2.2.2] tricyclic ring system. These units can be assembled into discreet molecules and polymers. These materials and/or formulations thereof with liquid crystals or polymers are useful for the complexation of chemicals and/or polymers; they have very low dielectric constants for use as coatings in dielectric circuits, they provide additional ordering mechanisms in liquid crystals, and they display unusual mechanical responses when subjected to electrochemical, chemical, or mechanical stimuli.
Molecular Design of Free Volume as a Route to Low-κ Dielectric Materials
作者:Timothy M. Long、Timothy M. Swager
DOI:10.1021/ja0360945
日期:2003.11.1
Polymers incorporating the triptycene subunit were prepared for the molecular-level design of low dielectric constant (low-kappa) materials that can be used to manufacture faster integrated circuits. Triptycenes having restricted rotation by multiple point attachment to the polymer backbone are shown to introduce free volume into the films, thereby lowering their dielectric constants. The triptycene containing polymers exhibit a number of desirable properties including low-water absorption and high thermal stability. Systematic studies wherein comparisons are made between two separate classes of triptycene polymers and their non-triptycene containing analogues demonstrate that proper insertion of triptycenes into a polymer backbone can give rise to a reduction in the material's dielectric constant while also improving its mechanical properties. These characteristics are desired by the semiconductor industry for the next generation of microprocessors and memory to provide insulation of the increasingly shrinking features.