摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(2S)-2-methylbutanoyl-CoA

中文名称
——
中文别名
——
英文名称
(2S)-2-methylbutanoyl-CoA
英文别名
[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-2-[[[[(3R)-3-hydroxy-2,2-dimethyl-4-[[3-[2-[(2S)-2-methylbutanoyl]sulfanylethylamino]-3-oxopropyl]amino]-4-oxobutoxy]-oxidophosphoryl]oxy-oxidophosphoryl]oxymethyl]oxolan-3-yl] phosphate
(2S)-2-methylbutanoyl-CoA化学式
CAS
——
化学式
C26H40N7O17P3S-4
mdl
——
分子量
847.6
InChiKey
LYNVNYDEQMMNMZ-JRQZLUQRSA-J
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -4.6
  • 重原子数:
    54
  • 可旋转键数:
    21
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.69
  • 拓扑面积:
    400
  • 氢给体数:
    5
  • 氢受体数:
    22

反应信息

  • 作为反应物:
    描述:
    (2S)-2-methylbutanoyl-CoA 、 FAD 、 氢(+1)阳离子 生成 (E)-2-Methylcrotonoyl-CoA 、 10-[(2S,3S,4R)-5-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2,3,4-trihydroxypentyl]-7,8-dimethyl-5H-benzo[g]pteridine-2,4-diolate
    参考文献:
    名称:
    编码酰基辅酶A脱氢酶基因家族新成员(ACADSB)前体的cDNA的分离和表达。
    摘要:
    酰基辅酶A脱氢酶(ACD)是一类线粒体酶,可在脂肪酸或支链氨基酸的代谢中氧化直链或支链酰基辅酶A。该基因家族成员的缺乏是人类疾病的重要原因。已经分离并鉴定了编码ACD基因家族的新成员(基因符号ACADSB)的人前体的cDNA。1.3 kb的开放阅读框编码431个氨基酸的前体蛋白,可在体外进行加工以产生399个氨基酸的成熟蛋白。cDNA与酰基辅酶A脱氢酶家族的其他成员具有明显的序列相似性,与短链酰基辅酶A脱氢酶具有最大的同源性(38%)。该cDNA在真核(COS)和原核(大肠杆菌)细胞中表达,
    DOI:
    10.1006/geno.1994.1617
点击查看最新优质反应信息

文献信息

  • β-Ketoacyl-Acyl Carrier Protein Synthase III (FabH) Is a Determining Factor in Branched-Chain Fatty Acid Biosynthesis
    作者:Keum-Hwa Choi、Richard J. Heath、Charles O. Rock
    DOI:10.1128/jb.182.2.365-370.2000
    日期:2000.1.15
    ABSTRACT

    A universal set of genes encodes the components of the dissociated, type II, fatty acid synthase system that is responsible for producing the multitude of fatty acid structures found in bacterial membranes. We examined the biochemical basis for the production of branched-chain fatty acids by gram-positive bacteria. Two genes that were predicted to encode homologs of the β-ketoacyl-acyl carrier protein synthase III of Escherichia coli (eFabH) were identified in the Bacillus subtilis genome. Their protein products were expressed, purified, and biochemically characterized. Both B. subtilis FabH homologs, bFabH1 and bFabH2, carried out the initial condensation reaction of fatty acid biosynthesis with acetyl-coenzyme A (acetyl-CoA) as a primer, although they possessed lower specific activities than eFabH. bFabH1 and bFabH2 also utilized iso- and anteiso-branched-chain acyl-CoA primers as substrates. eFabH was not able to accept these CoA thioesters. Reconstitution of a complete round of fatty acid synthesis in vitro with purified E. coli proteins showed that eFabH was the only E. coli enzyme incapable of using branched-chain substrates. Expression of either bFabH1 or bFabH2 in E. coli resulted in the appearance of a branched-chain 17-carbon fatty acid. Thus, the substrate specificity of FabH is an important determinant of branched-chain fatty acid production.

    摘要 一套通用的基因编码解离的 II 型脂肪酸合成酶系统的组分,该系统负责产生细菌膜中的多种脂肪酸结构。我们研究了革兰氏阳性细菌产生支链脂肪酸的生化基础。有两个基因被预测为编码大肠杆菌β-酰-酰基载体蛋白合成酶 III 的同源基因,它们分别是 大肠杆菌 (eFabH) 的两个基因枯草芽孢杆菌 基因组中发现。对它们的蛋白质产物进行了表达、纯化和生物化学鉴定。两种 枯草杆菌 bFabH1和bFabH2也利用异链和前异链酰基-CoA引物作为底物。用纯化的 大肠杆菌 蛋白在体外重建一轮完整的脂肪酸合成过程,结果表明 eFabH 是唯一的 大肠杆菌 酶不能使用支链底物。将 bFabH1 或 bFabH2 表达于 大肠杆菌 会导致出现支链 17 脂肪酸。因此,FabH 的底物特异性是产生支链脂肪酸的重要决定因素。
  • Characterization of β-Ketoacyl-Acyl Carrier Protein Synthase III from <i>Streptomyces glaucescens</i> and Its Role in Initiation of Fatty Acid Biosynthesis
    作者:Lei Han、Sandra Lobo、Kevin A. Reynolds
    DOI:10.1128/jb.180.17.4481-4486.1998
    日期:1998.9
    ABSTRACT

    The Streptomyces glaucescens fabH gene, encoding β-ketoacyl-acyl carrier protein (β-ketoacyl-ACP) synthase (KAS) III (FabH), was overexpressed in Escherichia coli , and the resulting gene product was purified to homogeneity by metal chelate chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the purified protein revealed an M r of 37,000, while gel filtration analysis determined a native M r of 72,000 ± 3,000 (mean ± standard deviation), indicating that the enzyme is homodimeric. The purified recombinant protein demonstrated both KAS activity and acyl coenzyme A (acyl-CoA):ACP transacylase (ACAT) activity in a 1:0.12 ratio. The KAS and ACAT activities were both sensitive to thiolactomycin inhibition. The KAS activity of the protein demonstrated a K m value of 3.66 μM for the malonyl-ACP substrate and an unusual broad specificity for acyl-CoA substrates, with K m values of 2.4 μM for acetyl-CoA, 0.71 μM for butyryl-CoA, and 0.41 μM for isobutyryl-CoA. These data suggest that the S. glaucescens FabH is responsible for initiating both straight- and branched-chain fatty acid biosynthesis in Streptomyces and that the ratio of the various fatty acids produced by this organism will be dictated by the ratios of the various acyl-CoA substrates that can react with FabH. Results from a series of in vivo directed biosynthetic experiments in which the ratio of these acyl-CoA substrates was varied are consistent with this hypothesis. An additional set of in vivo experiments using thiolactomycin provides support for the role of FabH and further suggests that a FabH-independent pathway for straight-chain fatty acid biosynthesis operates in S. glaucescens .

    摘要 链霉菌 链霉菌 fabH 编码β-酰-酰基载体蛋白(β-酰-ACP合成酶(KAS)III(FabH)的基因在 大肠杆菌 通过属螯合层析纯化基因产物至均一。对纯化的蛋白质进行十二烷基硫酸钠-聚丙烯酰胺凝胶电泳分析,结果显示其含有 M r 为 37,000,而凝胶过滤分析测定的原生 M r 为 72,000 ± 3,000(平均值 ± 标准偏差),表明该酶为同源二聚体。纯化的重组蛋白显示了 KAS 活性和酰基辅酶 A(酰基-CoA):ACP 转酰酶(ACAT)活性,两者的比例为 1:0.12。KAS 和 ACAT 活性对乳霉素的抑制都很敏感。该蛋白质的 KAS 活性显示了 K m 值为 3.66 μM,对丙二酰-ACP 底物具有不同寻常的广泛特异性,对酰基-CoA 底物的特异性为 K m 为 2.4 μM,丁酰-CoA 为 0.71 μM,异丁酰-CoA 为 0.41 μM。这些数据表明 S. glaucescens 的直链和支链脂肪酸生物合成。 链霉菌 而该生物体产生的各种脂肪酸的比例将由能与 FabH 发生反应的各种酰基-CoA 底物的比例决定。在一系列体内定向生物合成实验中,这些酰基-CoA 底物的比例发生了变化,实验结果与这一假设一致。另外一组使用乳霉素进行的体内实验也为 FabH 的作用提供了支持,并进一步表明,在藻华藻 S. glaucescens 中,有一条独立于 FabH 的直链脂肪酸生物合成途径。 S. glaucescens .
  • FabH selectivity for anteiso branched-chain fatty acid precursors in low-temperature adaptation in<i>Listeria monocytogenes</i>
    作者:Atul K. Singh、Yong-Mei Zhang、Kun Zhu、Chitra Subramanian、Zhong Li、Radheshyam K. Jayaswal、Craig Gatto、Charles O. Rock、Brian J. Wilkinson
    DOI:10.1111/j.1574-6968.2009.01814.x
    日期:2009.12
    Gram-positive bacteria, including Listeria monocytogenes, adjust membrane fluidity by shortening the fatty acid chain length and increasing the proportional production of anteiso fatty acids at lower growth temperatures. The first condensation reaction in fatty acid biosynthesis is carried out by β-ketoacyl-acyl carrier protein synthase III (FabH), which determines the type of fatty acid produced in bacteria. Here, we measured the initial rates of FabH-catalyzed condensation of malonyl-acyl carrier protein and alternate branched-chain precursor acyl-CoAs utilizing affinity-purified His-tagged L. monocytogenes FabH heterologously expressed in Escherichia coli. Listeria monocytogenes FabH showed a preference for 2-methylbutyryl-CoA, the precursor of odd-numbered anteiso fatty acids, at 30 °C, which was further increased at a low temperature (10 °C), suggesting that temperature-dependent substrate selectivity of FabH underlies the increased formation of anteiso branched-chain fatty acids during low-temperature adaptation. The increased FabH preferential condensation of 2-methylbutyryl-CoA could not be attributed to a significantly higher availability of this fatty acid precursor as acyl-CoA pool levels were reduced similarly for all fatty acid precursors at low temperatures.
    革兰氏阳性细菌(包括李斯特菌)通过缩短脂肪酸链长度和增加异构脂肪酸的比例生产来调整膜的流动性,从而在较低的生长温度下生长。脂肪酸生物合成中的第一次缩合反应是由β-酰基-酰基载体蛋白合成酶III(FabH)进行的,它决定了细菌中产生的脂肪酸的类型。在这里,我们测量了FabH催化丙二酰基-酰基载体蛋白和交替支链前体酰基-CoA缩合的初始速率,利用亲和纯化的His标签的L. monocytogenes FabH在大肠杆菌中异源表达。李斯特菌FabH在30°C时表现出对2-甲基丁酰-CoA(奇数异构脂肪酸的前体)的偏好,在低温(10°C)下进一步增加,这表明FabH对温度依赖的底物选择性是低温适应过程中异构支链脂肪酸形成增加的基础。FabH对2-甲基丁酰-CoA的优先缩合增加不能归因于这种脂肪酸前体的可用性显着提高,因为在低温下所有脂肪酸前体的酰基-CoA池平都类似地降低。
  • Ikeda Y.; Tanaka K., J Biol Chem, 1983, 0021-9258, 9477-87
    作者:Ikeda Y.、Tanaka K.
    DOI:——
    日期:——
  • Isolated 2-Methylbutyrylglycinuria Caused by Short/Branched-Chain Acyl-CoA Dehydrogenase Deficiency: Identification of a New Enzyme Defect, Resolution of Its Molecular Basis, and Evidence for Distinct Acyl-CoA Dehydrogenases in Isoleucine And Valine Metabolism
    作者:Brage Storstein Andresen、Ernst Christensen、Thomas J. Corydon、Peter Bross、Bente Pilgaard、Ronald J.A. Wanders、Jos P.N. Ruiter、Henrik Simonsen、Vibeke Winter、Inga Knudsen、Lisbeth Dahl Schroeder、Niels Gregersen、Flemming Skovby
    DOI:10.1086/303105
    日期:2000.11
    Acyl-CoA dehydrogenase (ACAD) defects in isoleucine and valine catabolism have been proposed in clinically diverse patients with an abnormal pattern of metabolites in their urine, but they have not been proved enzymatically or genetically, and it is unknown whether one or two ACADs are involved. We investigated a patient with isolated 2-methylbutyrylglycinuria, suggestive of a defect in isoleucine catabolism. Enzyme assay of the patient's fibroblasts, using 2-methylbutyryl-CoA as substrate, confirmed the defect. Sequence analysis of candidate ACADs revealed heterozygosity for the common short-chain ACAD A625 variant allele and no mutations in ACAD-8 but a 100-bp deletion in short/branched-chain ACAD (SBCAD) cDNA from the patient. Our identification of the SBCAD gene structure (11 exons; >20 kb) enabled analysis of genomic DNA. This showed that the deletion was caused by skipping of exon 10, because of homozygosity for a 1228G-->A mutation in the patient. This mutation was not present in 118 control chromosomes. In vitro transcription/translation experiments and overexpression in COS cells confirmed the disease-causing nature of the mutant SBCAD protein and showed that ACAD-8 is an isobutyryl-CoA dehydrogenase and that both wild-type proteins are imported into mitochondria and form tetramers. In conclusion, we report the first mutation in the SBCAD gene, show that it results in an isolated defect in isoleucine catabolism, and indicate that ACAD-8 is a mitochondrial enzyme that functions in valine catabolism.
查看更多