摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-(4-amino-3-methylphenyl)-6-hydroxybenzothiazole | 247080-31-5

中文名称
——
中文别名
——
英文名称
2-(4-amino-3-methylphenyl)-6-hydroxybenzothiazole
英文别名
2-(4-amino-3-methylphenyl)-1,3-benzothiazol-6-ol
2-(4-amino-3-methylphenyl)-6-hydroxybenzothiazole化学式
CAS
247080-31-5
化学式
C14H12N2OS
mdl
——
分子量
256.328
InChiKey
ZVMPPOTVHZXILL-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.4
  • 重原子数:
    18
  • 可旋转键数:
    1
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.07
  • 拓扑面积:
    87.4
  • 氢给体数:
    2
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2-(4-amino-3-methylphenyl)-6-hydroxybenzothiazole 在 sodium carbonate 、 三乙胺 作用下, 以 甲醇二氯甲烷 为溶剂, 反应 3.0h, 生成 N-[4-(6-Hydroxy-benzothiazol-2-yl)-2-methyl-phenyl]-acetamide
    参考文献:
    名称:
    Antitumor Benzothiazoles. 8. Synthesis, Metabolic Formation, and Biological Properties of the C- and N-Oxidation Products of Antitumor 2-(4-Aminophenyl)benzothiazoles
    摘要:
    2-(4-Aminophenyl)benzothiazoles 1 and their N-acetylated forms have been converted to C- and N-hydroxylated derivatives to investigate the role of metabolic oxidation in the mode of action of this series of compounds. 2-(4-Amino-3-methylphenyl)benzothiazole (1a, DF 203, NSC 674495) is a novel and potent antitumor agent with selective growth inhibitory properties against human cancer cell lines. Very low IC50 values (<0.1 mu M) were encountered in the most sensitive breast cancer cell lines, MCF-7 and T-47D, whereas renal cell line TK-10 was weakly inhibited by la. Cell lines from the same tissue origin, MDA-MB-435 (breast), CAKI-1 (renal), and A498 (renal), were insensitive to 1a. Accumulation and metabolism of la were observed in sensitive cell lines only, with the highest rate of metabolism occurring in the most sensitive MCF-7 and T-47D cells. Thus, differential uptake and metabolism of 1a by cancer cell lines may underlie its selective profile of anticancer activity. A major metabolite in these sensitive cell lines has been identified as 2-(4-amino-3-methylphenyl)-6-hydroxybenzothiazole (6c). Hydroxylation of 1a was not detected in the homogenate of previously untreated MCF-7, T-47D, and TK-10 cells but was readily observed in homogenates of sensitive cells that were pretreated with 1a. Accumulation and covalent binding of [C-14]1a derived radioactivity was observed in the sensitive MCF-7 cell line but not in the insensitive MDA-MB-435 cell line. The mechanism of growth inhibition by 1a, which is unknown, may be dependent on the differential metabolism of the drug to an activated form by sensitive cell Lines only and its covalent binding to an intracellular protein. However, the 6-hydroxy derivative 6c is not the 'active' metabolite since, like all other C- and N-hydroxylated benzothiazoles examined in this study, it is devoid of antitumor properties in vitro.
    DOI:
    10.1021/jm990104o
  • 作为产物:
    描述:
    3-甲基-4-硝基苯甲酰氯劳森试剂吡啶六甲基磷酰三胺sodium hydroxide三溴化硼 、 tin(ll) chloride 、 potassium hexacyanoferrate(III) 作用下, 以 乙醇二氯甲烷 为溶剂, 反应 13.5h, 生成 2-(4-amino-3-methylphenyl)-6-hydroxybenzothiazole
    参考文献:
    名称:
    Antitumor Benzothiazoles. 8. Synthesis, Metabolic Formation, and Biological Properties of the C- and N-Oxidation Products of Antitumor 2-(4-Aminophenyl)benzothiazoles
    摘要:
    2-(4-Aminophenyl)benzothiazoles 1 and their N-acetylated forms have been converted to C- and N-hydroxylated derivatives to investigate the role of metabolic oxidation in the mode of action of this series of compounds. 2-(4-Amino-3-methylphenyl)benzothiazole (1a, DF 203, NSC 674495) is a novel and potent antitumor agent with selective growth inhibitory properties against human cancer cell lines. Very low IC50 values (<0.1 mu M) were encountered in the most sensitive breast cancer cell lines, MCF-7 and T-47D, whereas renal cell line TK-10 was weakly inhibited by la. Cell lines from the same tissue origin, MDA-MB-435 (breast), CAKI-1 (renal), and A498 (renal), were insensitive to 1a. Accumulation and metabolism of la were observed in sensitive cell lines only, with the highest rate of metabolism occurring in the most sensitive MCF-7 and T-47D cells. Thus, differential uptake and metabolism of 1a by cancer cell lines may underlie its selective profile of anticancer activity. A major metabolite in these sensitive cell lines has been identified as 2-(4-amino-3-methylphenyl)-6-hydroxybenzothiazole (6c). Hydroxylation of 1a was not detected in the homogenate of previously untreated MCF-7, T-47D, and TK-10 cells but was readily observed in homogenates of sensitive cells that were pretreated with 1a. Accumulation and covalent binding of [C-14]1a derived radioactivity was observed in the sensitive MCF-7 cell line but not in the insensitive MDA-MB-435 cell line. The mechanism of growth inhibition by 1a, which is unknown, may be dependent on the differential metabolism of the drug to an activated form by sensitive cell Lines only and its covalent binding to an intracellular protein. However, the 6-hydroxy derivative 6c is not the 'active' metabolite since, like all other C- and N-hydroxylated benzothiazoles examined in this study, it is devoid of antitumor properties in vitro.
    DOI:
    10.1021/jm990104o
点击查看最新优质反应信息

文献信息

  • AMYLOID IMAGING AS A SURROGATE MARKER FOR EFFICACY OF ANTI-AMYLOID THERAPIES
    申请人:UNIVERSITY OF PITTSBURGH - OF THE COMM
    公开号:US20130045164A1
    公开(公告)日:2013-02-21
    The present method for determining the efficacy of therapy in the treatment of amyloidosis involves administering to a patient in need thereof a compound of formula (I) or Formula (II) or structures 1-45 and imaging the patient. After said imaging, at least one anti-amyloid agent is administered to said patient. Then, an effective amount of a compound of formula (I) or Formula (II) or structures 1-45 is administered to the patient and the patient is imaged again. Finally, baseline levels of amyloid deposition in the patient before treatment with the anti-amyloid agent are compared with levels of amyloid deposition in the patient following treatment with the anti-amyloid agent.
    目前用于确定淀粉样变性治疗疗效的方法包括向需要治疗的患者施用式(I)或式(II)或结构1-45的化合物并对患者进行成像。在成像后,给予患者至少一种抗淀粉样蛋白药物。然后,向患者施用有效量的式(I)或式(II)或结构1-45的化合物,并再次对患者进行成像。最后,将抗淀粉样蛋白药物治疗前患者的淀粉样沉积基线水平与治疗后患者的淀粉样沉积水平进行比较。
  • BENZOTHIAZOLE DERIVATIVE COMPOUNDS, COMPOSITIONS AND USES
    申请人:University of Pittsburgh - of the Commonwealth System of Higher Education
    公开号:EP1611115B1
    公开(公告)日:2012-08-22
  • RADIOPHARMACEUTICAL COMPOSITION
    申请人:Roed Line
    公开号:US20110008254A1
    公开(公告)日:2011-01-13
    The present invention relates to radiopharmaceuticals and in particular to a radiopharmaceutical composition comprising a compound of Formula (I): and polysorbate as an excipient. The radiopharmaceutical composition of the invention reduces problems encountered with prior art compositions comprising the same class of compounds. Also provided by the invention is a method for the preparation of the radiopharmaceutical composition of the invention as well as particular uses of the radiopharmaceutical composition.
  • THIOFLAVIN DERIVATIVES FOR USE IN ANTEMORTEM DIAGNOSIS OF ALZHEIMER'S DISEASE AND IN VIVO IMAGING AND PREVENTION OF AMYLOID DEPOSITION
    申请人:UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION
    公开号:US20180028694A1
    公开(公告)日:2018-02-01
    This invention relates to novel thioflavin derivatives, methods of using the derivatives in, for example, in vivo imaging of patients having neuritic plaques, pharmaceutical compositions comprising the thioflavin derivatives and method of synthesizing the compounds. The compounds find particular use in the diagnosis and treatment of patients having diseases where accumulation of neuritic plaques are prevalent. The disease states or maladies include but are not limited to Alzheimer's disease, familial Alzheimer's disease, Down's Syndrome and homozygotes for the apolipoprotein E4 allele.
  • US7270800B2
    申请人:——
    公开号:US7270800B2
    公开(公告)日:2007-09-18
查看更多

同类化合物

(1Z)-1-(3-乙基-5-羟基-2(3H)-苯并噻唑基)-2-丙酮 齐拉西酮砜 阳离子蓝NBLH 阳离子荧光黄4GL 锂2-(4-氨基苯基)-5-甲基-1,3-苯并噻唑-7-磺酸酯 铜酸盐(4-),[2-[2-[[2-[3-[[4-氯-6-[乙基[4-[[2-(硫代氧代)乙基]磺酰]苯基]氨基]-1,3,5-三嗪-2-基]氨基]-2-(羟基-kO)-5-硫代苯基]二氮烯基-kN2]苯基甲基]二氮烯基-kN1]-4-硫代苯酸根(6-)-kO]-,(1:4)氢,(SP-4-3)- 铜羟基氟化物 钾2-(4-氨基苯基)-5-甲基-1,3-苯并噻唑-7-磺酸酯 钠3-(2-{(Z)-[3-(3-磺酸丙基)-1,3-苯并噻唑-2(3H)-亚基]甲基}[1]苯并噻吩并[2,3-d][1,3]噻唑-3-鎓-3-基)-1-丙烷磺酸酯 邻氯苯骈噻唑酮 西贝奈迪 螺[3H-1,3-苯并噻唑-2,1'-环戊烷] 螺[3H-1,3-苯并噻唑-2,1'-环己烷] 葡萄属英A 草酸;N-[1-[4-(2-苯基乙基)哌嗪-1-基]丙-2-基]-2-丙-2-基氧基-1,3-苯并噻唑-6-胺 苯酰胺,N-2-苯并噻唑基-4-(苯基甲氧基)- 苯酚,3-[[2-(三苯代甲基)-2H-四唑-5-基]甲基]- 苯胺,N-(3-苯基-2(3H)-苯并噻唑亚基)- 苯碳杂氧杂脒,N-1,2-苯并异噻唑-3-基- 苯甲基2-甲基哌啶-1,2-二羧酸酯 苯并噻唑正离子,2-[3-(1,3-二氢-1,3,3-三甲基-2H-吲哚-2-亚基)-1-丙烯-1-基]-3-乙基-,碘化(1:1) 苯并噻唑正离子,2-[(2-乙氧基-2-羰基乙基)硫代]-3-甲基-,溴化 苯并噻唑啉 苯并噻唑-d4 苯并噻唑-6-腈 苯并噻唑-5-羧酸 苯并噻唑-5-硼酸频哪醇酯 苯并噻唑-4-醛 苯并噻唑-4-乙酸 苯并噻唑-2-磺酸钠 苯并噻唑-2-磺酸 苯并噻唑-2-磺酰氟 苯并噻唑-2-甲醛 苯并噻唑-2-甲酸 苯并噻唑-2-甲基甲胺 苯并噻唑-2-基磺酰氯 苯并噻唑-2-基叠氮化物 苯并噻唑-2-基-邻甲苯-胺 苯并噻唑-2-基-己基-胺 苯并噻唑-2-基-(4-氯-苯基)-胺 苯并噻唑-2-基-(4-氟-苯基)-胺 苯并噻唑-2-基-(4-乙氧基-苯基)-胺 苯并噻唑-2-基-(2-甲氧基-苯基)-胺 苯并噻唑-2-基-(2,6-二甲基-苯基)-胺 苯并噻唑-2-基(对甲苯基)甲醇 苯并噻唑-2-乙酸甲酯 苯并噻唑-2-乙腈 苯并噻唑-2(3H)-酮N2-[1-(吡啶-4-基)乙亚基]腙 苯并噻唑-2 - 丙基 苯并噻唑,6-(3-乙基-2-三氮烯基)-2-甲基-(8CI)