摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

L-gamma-谷氨酰-S-{[4-(甲基亚磺酰)丁基]硫代氨基甲酰}-L-半胱氨酰甘氨酸 | 289711-21-3

中文名称
L-gamma-谷氨酰-S-{[4-(甲基亚磺酰)丁基]硫代氨基甲酰}-L-半胱氨酰甘氨酸
中文别名
3-环己烯-1-羧酸,2-氨基-,(1S,2R)-
英文名称
sulforaphane glutathione
英文别名
D,L-Sulforaphane Glutathione;(2S)-2-amino-5-[[(2R)-1-(carboxymethylamino)-3-(4-methylsulfinylbutylcarbamothioylsulfanyl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid
L-gamma-谷氨酰-S-{[4-(甲基亚磺酰)丁基]硫代氨基甲酰}-L-半胱氨酰甘氨酸化学式
CAS
289711-21-3
化学式
C16H28N4O7S3
mdl
——
分子量
484.619
InChiKey
ROARKYNVUQLTDP-QGQIPBJJSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    157-160°C
  • 密度:
    1.444±0.06 g/cm3(Predicted)
  • 溶解度:
    可微溶于水(微溶)、甲醇(微溶、加热、超声处理)

计算性质

  • 辛醇/水分配系数(LogP):
    -4.1
  • 重原子数:
    30
  • 可旋转键数:
    16
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.69
  • 拓扑面积:
    265
  • 氢给体数:
    6
  • 氢受体数:
    11

SDS

SDS:a1a3a13cbd0910bf902860a861650201
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    异硫氰酸酯结合物的分解速率决定了它们作为细胞色素p450酶抑制剂的活性。
    摘要:
    异硫氰酸酯(硫醇-ITC)的硫醇共轭物是哺乳动物巯基酸途径中形成的ITC的代谢产物。它们在小鼠肺肿瘤生物测定和其他模型中是有效的化学预防剂。硫醇-ITC是P450的抑制剂,但尚未确定P450的抑制是由于缀合物本身还是由于去共轭反应释放的母体ITC所致。在研究硫醇-ITC的化学预防作用机理时,异硫氰酸苄酯(BITC),苯乙基异硫氰酸酯(PEITC),6-苯基己基异硫氰酸酯(半胱氨酸,半胱氨酸和N-乙酰基-L-半胱氨酸(NAC)缀合物的去偶联率) PHITC)和萝卜硫烷(SFN),表示为一级速率常数k(1)和分解半衰期Dt(1/2),是在pH 7.4和37度的水溶液中测量的。Cys缀合物的Dt(1/2)s比各个GSH缀合物的Dt(1/2)s短几倍,而NAC缀合物的Dt(1/2)s最长。硫醇缀合物的裂解是pH依赖性的,在酸性条件下比在pH 7.4下慢得多。随后对P450 2B1使用PROD(戊氧
    DOI:
    10.1021/tx010029w
  • 作为产物:
    描述:
    莱菔硫烷谷胱甘肽 在 sodium hydroxide 作用下, 以 乙醇 为溶剂, 反应 1.0h, 以53%的产率得到L-gamma-谷氨酰-S-{[4-(甲基亚磺酰)丁基]硫代氨基甲酰}-L-半胱氨酰甘氨酸
    参考文献:
    名称:
    Discovery of a crystalline sulforaphane analog with good solid-state stability and engagement of the Nrf2 pathway in vitro and in vivo
    摘要:
    The antioxidant natural product sulforaphane (SFN) is an oil with poor aqueous and thermal stability. Recent work with SFN has sought to optimize methods of formulation for oral and topical administration. Herein we report the design of new analogs of SFN with the goal of improving stability and drug-like properties. Lead compounds were selected based on potency in a cellular screen and physicochemical properties. Among these, 12 had good aqueous solubility, permeability and long-term solid-state stability at 23 degrees C. Compound 12 also displayed comparable or better efficacy in cellular assays relative to SFN and had in vivo activity in a mouse cigarette smoke challenge model of acute oxidative stress.
    DOI:
    10.1016/j.bmc.2018.12.026
点击查看最新优质反应信息

文献信息

  • A Comparative Assessment Study of Known Small-Molecule Keap1−Nrf2 Protein–Protein Interaction Inhibitors: Chemical Synthesis, Binding Properties, and Cellular Activity
    作者:Kim T. Tran、Jakob S. Pallesen、Sara M. Ø. Solbak、Dilip Narayanan、Amina Baig、Jie Zang、Alejandro Aguayo-Orozco、Rosa M. C. Carmona、Anthony D. Garcia、Anders Bach
    DOI:10.1021/acs.jmedchem.9b00723
    日期:2019.9.12
    Inhibiting the protein-protein interaction (PPI) between the transcription factor Nrf2 and its repressor protein Keap1 has emerged as a promising strategy to target oxidative stress in diseases, including central nervous system (CNS) disorders. Numerous non-covalent small-molecule Keap1-Nrf2 PPI inhibitors have been reported to date, but many feature suboptimal physicochemical properties for permeating the blood brain barrier, while others contain problematic structural moieties. Here, we present the first side-by-side assessment of all reported Keap1-Nrf2 PPI inhibitor classes using fluorescence polarization, thermal shift assay, and surface plasmon resonance-and further evaluate the compounds in an NQO1 induction cell assay and in counter tests for nonspecific activities. Surprisingly, half of the compounds were inactive or deviated substantially from reported activities, while we confirm the cross-assay activities for others. Through this study, we have identified the most promising Keap1-Nrf2 inhibitors that can serve as pharmacological probes or starting points for developing CNS-active Keap1 inhibitors.
  • Glucoraphanin and sulforaphane evolution during juice preparation from broccoli sprouts
    作者:Cristiano Bello、Mariateresa Maldini、Simona Baima、Cristina Scaccini、Fausta Natella
    DOI:10.1016/j.foodchem.2018.06.089
    日期:2018.12
    Broccoli sprouts are considered functional food as they are naturally enriched in glucoraphanin (GR) that is the biological precursor of the anticancer compound sulforaphane (SFN). Due to its health promoting value, also broccoli sprout juice is becoming very popular.The present study aimed to quantitatively assess the conversion of GR to its hydrolysis products, SFN and SFN-nitrile, during the juice preparation process. We demonstrated that SFN plus SFN-nitrile yield from glucoraphanin is quite low (approximate to 25%) and that some SFN is lost during the juice preparation partially due to the spontaneous conversion to sulforaphane-amine or conjugation to GSH and proteins naturally present in the juice. Our results demonstrate that the detection of the sole SFN free form does not provide reliable information about the real concentration of this functional compound in the juice.
  • Discovery of a crystalline sulforaphane analog with good solid-state stability and engagement of the Nrf2 pathway in vitro and in vivo
    作者:Jeffrey Boehm、Roderick Davis、Claudia E. Murar、Tindy Li、Brent McCleland、Shuping Dong、Hongxing Yan、Jeffrey Kerns、Christopher J. Moody、Anthony J. Wilson、Alan P. Graves、Mary Mentzer、Hongwei Qi、John Yonchuk、Jen-Pyng Kou、Joseph Foley、Yolanda Sanchez、Patricia L. Podolin、Brian Bolognese、Catherine Booth-Genthe、Marc Galop、Lawrence Wolfe、Robin Carr、James F. Callahan
    DOI:10.1016/j.bmc.2018.12.026
    日期:2019.2
    The antioxidant natural product sulforaphane (SFN) is an oil with poor aqueous and thermal stability. Recent work with SFN has sought to optimize methods of formulation for oral and topical administration. Herein we report the design of new analogs of SFN with the goal of improving stability and drug-like properties. Lead compounds were selected based on potency in a cellular screen and physicochemical properties. Among these, 12 had good aqueous solubility, permeability and long-term solid-state stability at 23 degrees C. Compound 12 also displayed comparable or better efficacy in cellular assays relative to SFN and had in vivo activity in a mouse cigarette smoke challenge model of acute oxidative stress.
  • Decomposition Rates of Isothiocyanate Conjugates Determine Their Activity as Inhibitors of Cytochrome P450 Enzymes
    作者:C. Clifford Conaway、Jacek Krzeminski、Shantu Amin、Fung-Lung Chung
    DOI:10.1021/tx010029w
    日期:2001.9.1
    isothiocyanates (thiol-ITCs) are metabolites of ITCs formed in the mercapturic acid pathway in mammals. They are effective chemopreventive agents in mouse lung tumor bioassays and in other models. Thiol-ITCs are inhibitors of P450s, but it has not been determined if P450 inhibition is due to conjugates themselves or to parent ITCs released by deconjugation reactions. In studies of mechanism of chemopreventive action
    异硫氰酸酯(硫醇-ITC)的硫醇共轭物是哺乳动物巯基酸途径中形成的ITC的代谢产物。它们在小鼠肺肿瘤生物测定和其他模型中是有效的化学预防剂。硫醇-ITC是P450的抑制剂,但尚未确定P450的抑制是由于缀合物本身还是由于去共轭反应释放的母体ITC所致。在研究硫醇-ITC的化学预防作用机理时,异硫氰酸苄酯(BITC),苯乙基异硫氰酸酯(PEITC),6-苯基己基异硫氰酸酯(半胱氨酸,半胱氨酸和N-乙酰基-L-半胱氨酸(NAC)缀合物的去偶联率) PHITC)和萝卜硫烷(SFN),表示为一级速率常数k(1)和分解半衰期Dt(1/2),是在pH 7.4和37度的水溶液中测量的。Cys缀合物的Dt(1/2)s比各个GSH缀合物的Dt(1/2)s短几倍,而NAC缀合物的Dt(1/2)s最长。硫醇缀合物的裂解是pH依赖性的,在酸性条件下比在pH 7.4下慢得多。随后对P450 2B1使用PROD(戊氧
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物