摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

Thioacetic acid S-{[bis-(4-methoxy-phenyl)-phosphanyl]-methyl} ester | 922517-77-9

中文名称
——
中文别名
——
英文名称
Thioacetic acid S-{[bis-(4-methoxy-phenyl)-phosphanyl]-methyl} ester
英文别名
S-{[Bis(4-methoxyphenyl)phosphanyl]methyl} ethanethioate;S-[bis(4-methoxyphenyl)phosphanylmethyl] ethanethioate
Thioacetic acid S-{[bis-(4-methoxy-phenyl)-phosphanyl]-methyl} ester化学式
CAS
922517-77-9
化学式
C17H19O3PS
mdl
——
分子量
334.376
InChiKey
LGAPURQVLQJCGM-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.5
  • 重原子数:
    22
  • 可旋转键数:
    7
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.24
  • 拓扑面积:
    60.8
  • 氢给体数:
    0
  • 氢受体数:
    4

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Staudinger Ligation of Peptides at Non-Glycyl Residues
    摘要:
    The Staudinger ligation provides a means to form an amide bond between a phosphinothioester and azide. This reaction holds promise for the ligation of peptides en route to the total chemical synthesis of proteins. (Diphenylphosphino) methanethiol is the most efficacious of known reagents for mediating the Staudinger ligation of peptides, providing high (> 90%) isolated yields for equimolar couplings in which a glycine residue is at the nascent junction. Surprisingly, the yields are lower (< 50%) for non-glycyl couplings due to an aza-Wittig reaction that diverts the reaction toward a phosphonamide byproduct. Here, the partitioning of the reaction toward Staudinger ligation (and away from the aza-Wittig reaction) is shown to increase with increasing electron density on phosphorus. This electron density can be tuned either by installing functional groups on the phenyl substituents of (diphenylphosphino) methanethiol or by changing the polarity of the solvent. Installing p-methoxy groups and using a solvent of low polarity (such as toluene or dioxane) provide especially high (> 80%) isolated yields for the ligation of two non-glycyl residues. These conditions retain the high chemoselectivity of the reaction and do not lead to a substantial change in reaction rate. The traceless Staudinger ligation is now poised to enable the iterative ligation of peptides with little regard for their sequence, as well as the synthesis of amide bonds for other purposes.
    DOI:
    10.1021/jo0620056
  • 作为产物:
    参考文献:
    名称:
    Staudinger Ligation of Peptides at Non-Glycyl Residues
    摘要:
    The Staudinger ligation provides a means to form an amide bond between a phosphinothioester and azide. This reaction holds promise for the ligation of peptides en route to the total chemical synthesis of proteins. (Diphenylphosphino) methanethiol is the most efficacious of known reagents for mediating the Staudinger ligation of peptides, providing high (> 90%) isolated yields for equimolar couplings in which a glycine residue is at the nascent junction. Surprisingly, the yields are lower (< 50%) for non-glycyl couplings due to an aza-Wittig reaction that diverts the reaction toward a phosphonamide byproduct. Here, the partitioning of the reaction toward Staudinger ligation (and away from the aza-Wittig reaction) is shown to increase with increasing electron density on phosphorus. This electron density can be tuned either by installing functional groups on the phenyl substituents of (diphenylphosphino) methanethiol or by changing the polarity of the solvent. Installing p-methoxy groups and using a solvent of low polarity (such as toluene or dioxane) provide especially high (> 80%) isolated yields for the ligation of two non-glycyl residues. These conditions retain the high chemoselectivity of the reaction and do not lead to a substantial change in reaction rate. The traceless Staudinger ligation is now poised to enable the iterative ligation of peptides with little regard for their sequence, as well as the synthesis of amide bonds for other purposes.
    DOI:
    10.1021/jo0620056
点击查看最新优质反应信息

文献信息

  • Electronic and steric effects on the rate of the traceless Staudinger ligation
    作者:Annie Tam、Matthew B. Soellner、Ronald T. Raines
    DOI:10.1039/b802336k
    日期:——
    Interplay between electronic effects imparted by phosphinothiol substituents and steric effects imposed by amino-acid reactants affects the rate of the traceless Staudinger ligation of peptides in a predictable manner.
    膦硫醇取代基赋予的电子效应与氨基酸反应物施加的空间效应之间的相互作用以可预测的方式影响肽的无痕 Staudinger 连接速率。
  • Staudinger Ligation of Peptides at Non-Glycyl Residues
    作者:Matthew B. Soellner、Annie Tam、Ronald T. Raines
    DOI:10.1021/jo0620056
    日期:2006.12.1
    The Staudinger ligation provides a means to form an amide bond between a phosphinothioester and azide. This reaction holds promise for the ligation of peptides en route to the total chemical synthesis of proteins. (Diphenylphosphino) methanethiol is the most efficacious of known reagents for mediating the Staudinger ligation of peptides, providing high (> 90%) isolated yields for equimolar couplings in which a glycine residue is at the nascent junction. Surprisingly, the yields are lower (< 50%) for non-glycyl couplings due to an aza-Wittig reaction that diverts the reaction toward a phosphonamide byproduct. Here, the partitioning of the reaction toward Staudinger ligation (and away from the aza-Wittig reaction) is shown to increase with increasing electron density on phosphorus. This electron density can be tuned either by installing functional groups on the phenyl substituents of (diphenylphosphino) methanethiol or by changing the polarity of the solvent. Installing p-methoxy groups and using a solvent of low polarity (such as toluene or dioxane) provide especially high (> 80%) isolated yields for the ligation of two non-glycyl residues. These conditions retain the high chemoselectivity of the reaction and do not lead to a substantial change in reaction rate. The traceless Staudinger ligation is now poised to enable the iterative ligation of peptides with little regard for their sequence, as well as the synthesis of amide bonds for other purposes.
查看更多