An efficient iridiumcatalyst composed of a simple and commercially available o-methoxytriphenylphosphine and 9-Amino (9-deoxy) epi-cinchonine was applied to the asymmetric hydrogenation of heteroaromatic ketones. A range of simple heteroaromatic ketones could be hydrogenated with good to excellent enantioselectivities and high activities. In particular, thiophene ketones and furyl ketones furnished
Heterogeneous asymmetric hydrogenation of heteroaromatic methyl ketones catalyzed by cinchona-modified iridium catalysts
作者:Chun Li、Lin Zhang、Congye Zheng、Xueli Zheng、Haiyan Fu、Hua Chen、Ruixiang Li
DOI:10.1016/j.tetasy.2014.04.013
日期:2014.5
A heterogeneous iridium catalyst was synthesized with silica particles as support for the hydrogenation of heteroaromatic methyl ketones. The catalyst and support were characterized by solid-state NMR, HTEM, SEM, XPS, and BET. A series of heteroaromatic methyl ketones were investigated at room temperature. The catalytic system was effective and more than 99% conversion and up to 83.6% enantioselectivity were obtained in the hydrogenation of heteroaromatic methyl ketones. (C) 2014 Published by Elsevier Ltd.
Retracted: The Manganese(I)‐Catalyzed Asymmetric Transfer Hydrogenation of Ketones: Disclosing the Macrocylic Privilege
作者:Alessandro Passera、Antonio Mezzetti
DOI:10.1002/anie.201912605
日期:2020.1.2
The bis(carbonyl) manganese(I) complex [Mn(CO)2 (1)]Br (2) with a chiral (NH)2 P2 macrocyclic ligand (1) catalyzes the asymmetrictransferhydrogenation of polar double bonds with 2-propanol as the hydrogen source. Ketones (43 substrates) are reduced to alcohols in high yields (up to >99 %) and with excellent enantioselectivities (90-99 % ee). A stereochemical model based on attractive CH-π interactions