摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-(3-羧基丙酰)-L-丙氨酰-L-丙氨酰-L-脯氨酰-N-(4-硝基苯基)-L-亮氨酰胺 | 70968-04-6

中文名称
N-(3-羧基丙酰)-L-丙氨酰-L-丙氨酰-L-脯氨酰-N-(4-硝基苯基)-L-亮氨酰胺
中文别名
——
英文名称
Suc-Ala-Ala-Pro-Leu-pNA
英文别名
suc-AAPL-pNA;Suc-ala-ala-pro-leu-pna;4-[[(2S)-1-[[(2S)-1-[(2S)-2-[[(2S)-4-methyl-1-(4-nitroanilino)-1-oxopentan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-oxobutanoic acid
N-(3-羧基丙酰)-L-丙氨酰-L-丙氨酰-L-脯氨酰-N-(4-硝基苯基)-L-亮氨酰胺化学式
CAS
70968-04-6
化学式
C27H38N6O9
mdl
MFCD00077159
分子量
590.634
InChiKey
PTHRPHGMGFMCSS-USNOLKROSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    1003.8±65.0 °C(Predicted)
  • 密度:
    1.322±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    0.5
  • 重原子数:
    42
  • 可旋转键数:
    13
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.555
  • 拓扑面积:
    220
  • 氢给体数:
    5
  • 氢受体数:
    9

安全信息

  • WGK Germany:
    3

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    The molecular basis of the effect of temperature on enzyme activity
    摘要:
    实验数据表明,温度对酶的影响无法用基于活性增加和变性的双态模型来充分解释。平衡模型通过引入与活性形式快速平衡的非活性(但未变性)中间体,对反应条件下的酶热行为提供了定量解释。两种形式之间快速平衡的温度中点(Teq)与生物体的生长温度有关,而平衡焓(ΔHeq)与生物体在不同温度范围内发挥作用的能力有关。在本研究中,我们发现活性和非活性形式之间的区别在于酶的活性位点。研究结果揭示了一种与酶的反应或结构无关的、基于活性位点或活性位点附近的明显普遍机制,通过这种机制,酶的活性随着温度的升高而丧失,而变性则是全球性的。研究结果表明,低于 Teq 的活性损失可能会导致根据双态("经典")模型确定的 ΔG*cat 出现重大误差,因此测得的 kcat 无法真实反映酶的催化能力。总之,这些结果为观察到的活性位点往往比酶整体更灵活、变性前会出现活性损失等现象提供了分子原理,并从分子角度为温度对酶活性的影响提供了一般性解释。
    DOI:
    10.1042/bj20091254
点击查看最新优质反应信息

文献信息

  • Fibrinolytic and Antithrombotic Protease from Spirodela polyrhiza
    作者:Hye-Seon CHOI、You-Seon SA
    DOI:10.1271/bbb.65.781
    日期:2001.1
    A fibrinolytic protease was purified from a Chinese herb (Spirodela polyrhiza). The protease has a molecular mass of 145 kDa and 70 kDa in gel filtration and SDS-polyacrlamide gel electrophoresis (PAGE), respectively, implying it is a dimer. Its optimum pH was 4.5-5.0 The enzyme was stable below 42°C and after lyophilization. The enzyme activity was inhibited significantly by leupeptin and aprotinin. The protease hydrolyzed not only fibrin but also fibrinogen, cleaving Aα and Bβ without affecting the γ chain of fibrinogen. It preferentially cleaved the peptide bond of Arg or Lys of synthetic substates (P1 position). The enzyme had an anticoagulating activity measured with activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) tests. It delayed APTT, TT, and PT two times at the concentration of 36, 39, and 128 nM, respectively and this was drastically reduced after heat treatment.
    从一种中草药(刺五加)中纯化出了一种纤维蛋白溶解蛋白酶。在凝胶过滤和 SDS 聚丙烯酰胺凝胶电泳(PAGE)中,该蛋白酶的分子质量分别为 145 kDa 和 70 kDa,这意味着它是一种二聚体。酶的最适 pH 值为 4.5-5.0,在 42°C 以下和冻干后稳定。利血平和阿普罗宁对酶的活性有明显的抑制作用。该蛋白酶不仅能纤维蛋白,还能纤维蛋白原,裂解 Aα 和 Bβ,而不影响纤维蛋白原的γ 链。它优先裂解合成亚基(P1 位)中 Arg 或 Lys 的肽键。通过活化部分凝血活酶时间(APTT)、凝血酶时间(TT)和凝血酶原时间(PT)测试,该酶具有抗凝活性。在浓度分别为 36、39 和 128 nM 时,它能将 APTTTTPT 的时间延迟两倍,而在加热处理后,这种延缓作用会急剧下降。
  • Calorimetric evaluation of enzyme kinetic parameters
    作者:Brent A. Williams、Eric J. Toone
    DOI:10.1021/jo00065a010
    日期:1993.6
    The measurement of kinetic parameters (k(cat), K(m), K(i)) for a wide range of proteolytic enzymes is vital to contemporary bioorganic and medicinal chemistry. Enzyme assays based on changes in optical properties of the system or changes in concentration of an ion detectable electrochemically are not viable for many enzyme-catalyzed reactions, including proteases and peptidases. Hydrolysis of an amide bond produces no change in the optical properties or pH of the reaction solution, and as a result no general direct method for the evaluation of protease kinetics exists using underivatized substrates. We report here a microcalorimetric assay which provides a general and straightforward technique for the measurement of kinetic parameters of hydrolysis of underivatized peptide substrates by proteases. Using this technique, k(cat) values as high as 10(5) s-1 can be easily measured. We demonstrate the utility of the technique by measuring the kinetics of hydrolysis of several N-acylamino acids by the synthetically useful enzyme hog kidney acylase and the hydrolysis of tetrapeptide p-nitrophenyl anilides by subtilisin BPN'. Although we have used the technique to monitor amide bond hydrolysis, the methodology is applicable to any system with appropriate kinetic and thermodynamic properties.
  • Serine Protease-mediated Host Invasion by the Parasitic Nematode Steinernema carpocapsae
    作者:Duarte Toubarro、Miguel Lucena-Robles、Gisela Nascimento、Romana Santos、Rafael Montiel、Paula Veríssimo、Euclides Pires、Carlos Faro、Ana V. Coelho、Nelson Simões
    DOI:10.1074/jbc.m110.129346
    日期:2010.10
    Steinernema carpocapsae is an insect parasitic nematode used in biological control, which infects insects penetrating by mouth and anus and invading the hemocoelium through the midgut wall. Invasion has been described as a key factor in nematode virulence and suggested to be mediated by proteases. A serine protease cDNA from the parasitic stage was sequenced (sc-sp-1); the recombinant protein was produced in an Escherichia coli system, and a native protein was purified from the secreted products. Both proteins were confirmed by mass spectrometry to be encoded by the sc-sp-1 gene. Sc-SP-1 has a pI of 8.7, a molecular mass of 27.3 kDa, a catalytic efficiency of 22.2 x 10(4) s(-1) M-1 against N-succinyl-Ala-Ala-Pro-Phe-pNA, and is inhibited by chymostatin (IC 0.07) and PMSF (IC 0.73). Sc-SP-1 belongs to the chymotrypsin family, based on sequence and biochemical analysis. Only the nematode parasitic stage expressed sc-sp-1. These nematodes in the midgut lumen, prepared to invade the insect hemocoelium, expressed higher levels than those already in the hemocoelium. Moreover, parasitic nematode sense insect peritrophic membrane and hemolymph more quickly than they do other tissues, which initiates sc-sp-1 expression. Ex vivo, Sc-SP-1 was able to bind to insect midgut epithelium and to cause cell detachment from basal lamina. In vitro, Sc-SP-1 formed holes in an artificial membrane model (Matrigel), whereas Sc-SP-1 treated with PMSF did not, very likely because it hydrolyzes matrix glycoproteins. These findings highlight the S. carpocapsae-invasive process that is a key step in the parasitism thus opening new perspectives for improving nematode virulence to use in biological control.
  • Cleavage of peptide bonds bearing ionizable amino acids at P1 by serine proteases with hydrophobic S1 pocket
    作者:Mohammad A. Qasim、Jikui Song、John L. Markley、Michael Laskowski
    DOI:10.1016/j.bbrc.2010.08.078
    日期:2010.10
    Enzymatic hydrolysis of the synthetic substrate succinyl-Ala-Ala-Pro-Xxx-pNA (where Xxx = Leu, Asp or Lys) catalyzed by bovine chymotrypsin (CHYM) or Streptomyces griseus protease B (SGPB) has been studied at different pH values in the pH range 3-11. The pH optima for substrates having Leu, Asp, and Lys have been found to be 7.5-8.0, 5.5-6.0, and similar to 10, respectively. At the normally reported pH optimum (pH 7-8) of CHYM and SGPB, the substrate with Leu at the reactive site is more than 25,000-fold more reactive than that with Asp. However, when fully protonated, Asp is nearly as good a substrate as Leu. The pK values of the side chains of Asp and Lys in the hydrophobic SI pocket of CHYM and SGPB have been calculated from pH-dependent hydrolysis data and have been found to be about 9 for Asp and 7.4 and 9.7 for Lys for CHYM and SGPB, respectively. The results presented in this communication suggest a possible application of CHYM like enzymes in cleaving peptide bonds contributed by acidic amino acids between pH 5 and 6. (C) 2010 Elsevier Inc. All rights reserved.
  • Bmp Gene and Fusion Protein
    申请人:Hidaka Chisa
    公开号:US20080260829A1
    公开(公告)日:2008-10-23
    This invention relates to BMP fusion genes, BMP fusion proteins. The invention further relates to methods for treatment using BMP fusion genes and BMP fusion proteins. Additionally, the invention relates to BMP fusion gene and BMP fusion protein pharmaceutical compositions.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸