摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

bis(1,4-diphenylbut-1-en-3-ynyl) ditelluride | 184843-52-5

中文名称
——
中文别名
——
英文名称
bis(1,4-diphenylbut-1-en-3-ynyl) ditelluride
英文别名
[(Z)-1-[[(Z)-1,4-diphenylbut-1-en-3-ynyl]ditellanyl]-4-phenylbut-1-en-3-ynyl]benzene
bis(1,4-diphenylbut-1-en-3-ynyl) ditelluride化学式
CAS
184843-52-5
化学式
C32H22Te2
mdl
——
分子量
661.727
InChiKey
OBLUIGKLDZFQIW-WVMMTVHUSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    6.5
  • 重原子数:
    34
  • 可旋转键数:
    7
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    bis(1,4-diphenylbut-1-en-3-ynyl) ditelluride 在 sodium tetrahydroborate 、 作用下, 生成 Tellurophene, 3-iodo-2,5-diphenyl-
    参考文献:
    名称:
    Iodocyclization of (Z)-1-(Butyltelluro)-1,4-diorganylbut-1-en-3-ynes. Synthesis and Reactions of 3-Iodotellurophenes
    摘要:
    The iodocyclization of(Z)-tellurobutenynes 5a-g by reaction with I-2/petroleum ether was studied in detail. 3-Iodotellurophenes 7a-f were formed, and optimum conditions to obtain these compounds in high yields were established. The reaction involves attack of iodide at the initially formed intermediate of type 10 followed by ring closure that is favored by the strong aromatic character of the resulting products. Two possible and alternative pathways for the ring closure are proposed to explain our observations: (a) transformation of 10 to 11 that undergoes further cyclization to give 7a-f (pathway a) or (b) direct cyclization of 10 to give tellurophene diiodide 9 (pathway b). The products and side products obtained are in agreement with the proposed mechanisms. Formation of 7a from ditelluride 14 and iodine provides additional evidence of the intermediacy of 11 (in pathway a). Structures of 7a and 5g were elucidated by X-ray crystallography. In the case of compound 5e, where a terminal triple bond was present, the resulting intermediate of type 10 also underwent the attack of iodide directly at the terminal carbon to give compound 12 together with 7e. Ring-opening of 3-iodotellurophene 7a occurs by reaction with n-butyllithium to form acyclic ditelluride 14 or monotelluride 16 depending on. the alkyllithium amounts employed. Plausible mechanisms for these novel reactions are proposed and supported. Conversion of 7a to 3-(butyltelluro)-2,5-diphenyltellurophen (22) was carried out readily by an unusual ''aromatic nucleophilic substitution'' using the butyl tellurolate anion.
    DOI:
    10.1021/jo961461z
  • 作为产物:
    描述:
    (Z)-1,4-二苯基-1-丁烯-3-炔基-1-丁基碲化物 在 sodium tetrahydroborate 、 正丁基锂 作用下, 以 四氢呋喃 为溶剂, 反应 0.84h, 生成 bis(1,4-diphenylbut-1-en-3-ynyl) ditelluride
    参考文献:
    名称:
    Iodocyclization of (Z)-1-(Butyltelluro)-1,4-diorganylbut-1-en-3-ynes. Synthesis and Reactions of 3-Iodotellurophenes
    摘要:
    The iodocyclization of(Z)-tellurobutenynes 5a-g by reaction with I-2/petroleum ether was studied in detail. 3-Iodotellurophenes 7a-f were formed, and optimum conditions to obtain these compounds in high yields were established. The reaction involves attack of iodide at the initially formed intermediate of type 10 followed by ring closure that is favored by the strong aromatic character of the resulting products. Two possible and alternative pathways for the ring closure are proposed to explain our observations: (a) transformation of 10 to 11 that undergoes further cyclization to give 7a-f (pathway a) or (b) direct cyclization of 10 to give tellurophene diiodide 9 (pathway b). The products and side products obtained are in agreement with the proposed mechanisms. Formation of 7a from ditelluride 14 and iodine provides additional evidence of the intermediacy of 11 (in pathway a). Structures of 7a and 5g were elucidated by X-ray crystallography. In the case of compound 5e, where a terminal triple bond was present, the resulting intermediate of type 10 also underwent the attack of iodide directly at the terminal carbon to give compound 12 together with 7e. Ring-opening of 3-iodotellurophene 7a occurs by reaction with n-butyllithium to form acyclic ditelluride 14 or monotelluride 16 depending on. the alkyllithium amounts employed. Plausible mechanisms for these novel reactions are proposed and supported. Conversion of 7a to 3-(butyltelluro)-2,5-diphenyltellurophen (22) was carried out readily by an unusual ''aromatic nucleophilic substitution'' using the butyl tellurolate anion.
    DOI:
    10.1021/jo961461z
点击查看最新优质反应信息

文献信息

  • Iodocyclization of (<i>Z</i>)-1-(Butyltelluro)-1,4-diorganylbut-1-en-3-ynes. Synthesis and Reactions of 3-Iodotellurophenes
    作者:Miguel J. Dabdoub、Vânia B. Dabdoub、Marco A. Pereira、Julio Zukerman-Schpector
    DOI:10.1021/jo961461z
    日期:1996.1.1
    The iodocyclization of(Z)-tellurobutenynes 5a-g by reaction with I-2/petroleum ether was studied in detail. 3-Iodotellurophenes 7a-f were formed, and optimum conditions to obtain these compounds in high yields were established. The reaction involves attack of iodide at the initially formed intermediate of type 10 followed by ring closure that is favored by the strong aromatic character of the resulting products. Two possible and alternative pathways for the ring closure are proposed to explain our observations: (a) transformation of 10 to 11 that undergoes further cyclization to give 7a-f (pathway a) or (b) direct cyclization of 10 to give tellurophene diiodide 9 (pathway b). The products and side products obtained are in agreement with the proposed mechanisms. Formation of 7a from ditelluride 14 and iodine provides additional evidence of the intermediacy of 11 (in pathway a). Structures of 7a and 5g were elucidated by X-ray crystallography. In the case of compound 5e, where a terminal triple bond was present, the resulting intermediate of type 10 also underwent the attack of iodide directly at the terminal carbon to give compound 12 together with 7e. Ring-opening of 3-iodotellurophene 7a occurs by reaction with n-butyllithium to form acyclic ditelluride 14 or monotelluride 16 depending on. the alkyllithium amounts employed. Plausible mechanisms for these novel reactions are proposed and supported. Conversion of 7a to 3-(butyltelluro)-2,5-diphenyltellurophen (22) was carried out readily by an unusual ''aromatic nucleophilic substitution'' using the butyl tellurolate anion.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐