Nature is capable of storing solar energy in chemical bonds via photosynthesis through a series of C—C, C—O and C—N bond-forming reactions starting from CO
2
and light. Direct capture of solar energy for organic synthesis is a promising approach. Lead (Pb)-halide perovskite solar cells reach 24.2% power conversion efficiency, rendering perovskite a unique type material for solar energy capture. We show that photophysical properties of perovskites is useful in photoredox organic synthesis. Because the key aspects of these two applications are both relying on charge separation and transfer. Here we demonstrated that perovskites nanocrystals are exceptional candidates as photocatalysts for fundamental organic reactions, i.e. C—C, C—N and C—O bond-formations. Stability of CsPbBr
3
in organic solvents and ease-of-tuning their bandedges garner perovskite a wider scope of organic substrate activations.
大自然能够通过光合作用将太阳能储存在
化学键中,通过一系列从
二氧化碳和光开始的C—C、C—O和C—N键形成反应。直接捕获太阳能用于有机合成是一种有前途的方法。
铅(Pb)卤化物
钙钛矿太阳能电池达到了24.2%的转换效率,使得
钙钛矿成为太阳能捕获的一种独特材料。我们展示了
钙钛矿的光物理性质在光氧化有机合成中的有用性。因为这两种应用的关键方面都依赖于电荷分离和转移。在这里,我们证明了
钙钛矿纳米晶体是基本有机反应的光催化剂的优秀候选者,即C—C、C—N和C—O键形成。CsPbBr3在有机溶剂中的稳定性和易于调节其带边使
钙钛矿具有更广泛的有机底物活化范围。