AbstractThe development of novel antimycobacterial agents is an urgent challenge to eradicate the increasing emergence and rapid spread of multidrug‐resistant strains. Filamentous temperature‐sensitive protein Z (FtsZ) is a crucial cell division protein. Alteration of FtsZ assembly leads to cell division inhibition and cell death. To find novel antimycobacterial agents, a series of N1‐(benzo[d]oxazol‐2‐yl)‐N4‐arylidine compounds 5a–o were synthesized. The activity of the compounds was evaluated against drug‐sensitive, multidrug‐resistant, and extensive‐drug‐resistant Mycobacterium tuberculosis. Compounds 5b, 5c, 5l, 5m, and 5o showed promising antimycobacterial activity with minimum inhibitory concentrations (MIC) in the range of 0.48–1.85 µg/mL and with low cytotoxicity against human nontumorigenic lung fibroblast WI‐38 cells. The activity of the compounds 5b, 5c, 5l, 5m, and 5o was evaluated against bronchitis causing‐bacteria. They exhibited good activity against Streptococcus pneumoniae, Klebsiella pneumoniae, Mycoplasma pneumonia, and Bordetella pertussis. Molecular dynamics simulations of Mtb FtsZ protein‐ligand complexes identified the interdomain site as the binding site and key interactions. ADME prediction indicated that the synthesized compounds have drug‐likeness. The density function theory studies of 5c, 5l, and 5n were performed to investigate E/Z isomerization. Compounds 5c and 5l are present as E‐isomers and 5n as an E/Z mixture. Our experimental outcomes provide an auspicious lead for the design of more selective and potent antimycobacterial drugs.
摘要开发新型抗霉菌药物是消除耐多药菌株日益出现和迅速蔓延的一项紧迫挑战。丝状温度敏感蛋白 Z(FtsZ)是一种关键的细胞分裂蛋白。改变 FtsZ 的组装会导致细胞分裂受抑制和细胞死亡。为了寻找新型抗霉菌药物,我们合成了一系列 N1-(苯并[d]恶唑-2-基)-N4-芳基啶化合物 5a-o。评估了这些化合物对药物敏感、耐多种药物和广泛耐药结核分枝杆菌的活性。化合物 5b、5c、5l、5m 和 5o 显示出良好的抗分枝杆菌活性,最低抑菌浓度(MIC)在 0.48-1.85 µg/mL 之间,对人类非致癌肺成纤维细胞 WI-38 细胞的细胞毒性较低。评估了化合物 5b、5c、5l、5m 和 5o 对引起支气管炎的细菌的活性。它们对肺炎链球菌、肺炎克雷伯氏菌、肺炎支原体和百日咳博德特氏菌表现出良好的活性。对 Mtb FtsZ 蛋白-配体复合物进行的分子动力学模拟确定了链间位点是结合位点和关键的相互作用。ADME 预测表明,合成的化合物具有药物相似性。对 5c、5l 和 5n 进行了密度函数理论研究,以探讨 E/Z 异构化。化合物 5c 和 5l 以 E-异构体形式存在,5n 以 E/Z 混合物形式存在。我们的实验结果为设计更具选择性和更有效的抗霉菌药物提供了有利的线索。