Superiority of the carbamoylmethyl ester as an acyl donor for the kinetically controlled amide-bond formation mediated by α-chymotrypsinElectronic supplementary information (ESI) available: elemental analyses and HPLC separation data. See http://www.rsc.org/suppdata/p1/b1/b108735p/
The superiority of the carbamoylmethyl ester as an acyl donor for the α-chymotrypsin-catalysed kinetically controlled peptide-bond formation is demonstrated in the couplings of an inherently poor amino acid substrate, Ala, with various amino acid residues as amino components and in the couplings of non-protein amino acids such as halogenophenylalanines as carboxylic components. Furthermore, this approach is applied to the amide-bond formation between an amino acid residue and a chiral amine, which is highly diastereoselective.
α-Chymotrypsin-catalysed peptide synthesis via the kinetically controlled approach using activated esters as acyl donors in organic solvents with low water content: incorporation of non-protein amino acids into peptides
α-chymotrypsin-catalysed peptide synthesis via the kinetically controlled approach is greatly improved by the use of activated esters such as the 2,2,2-trifluoroethyl ester as acyl donors instead of the conventional methyl ester in organicsolvents such as acetonitrile with low water content. This approach is useful for the incorporation of non-protein amino acids such as halogenophenylalanines into peptides.