Application of Structure-Based Drug Design and Parallel Chemistry to Identify Selective, Brain Penetrant, In Vivo Active Phosphodiesterase 9A Inhibitors
作者:Michelle M. Claffey、Christopher J. Helal、Patrick R. Verhoest、Zhijun Kang、Kristina S. Fors、Stanley Jung、Jiaying Zhong、Mark W. Bundesmann、Xinjun Hou、Shenping Lui、Robin J. Kleiman、Michelle Vanase-Frawley、Anne W. Schmidt、Frank Menniti、Christopher J. Schmidt、William E. Hoffman、Mihaly Hajos、Laura McDowell、Rebecca E. O’Connor、Mary MacDougall-Murphy、Kari R. Fonseca、Stacey L. Becker、Frederick R. Nelson、Spiros Liras
DOI:10.1021/jm3009635
日期:2012.11.8
sought to identify a preclinical candidate with no asymmetry in rat brain penetration and that could advance into development. Merging the medicinal chemistry strategies of structure-based design with parallel chemistry, a novel series of PDE9A inhibitors was identified that showed improved selectivity over PDE1C. Optimization afforded preclinical candidate 19 that demonstrated free brain/free plasma
磷酸二酯酶9A抑制剂已在临床前认知模型中显示出活性,并有望作为治疗阿尔茨海默氏病的新疗法。我们的临床候选药物PF-04447943(2)在中枢和外周腔室之间有一定程度的不对称性(游离脑/游离血浆= 0.32; CSF /游离血浆= 0.19)中表现出可接受的CNS渗透性,但其理化特性超出了与传统的中枢神经系统药物。为了解决CNS渗透受限的潜在风险,请使用2在人类临床试验中,我们试图确定在大鼠脑部渗透方面没有不对称性且可以发展的临床前候选药物。将基于结构的设计的药物化学策略与并行化学方法相结合,发现了一系列新的PDE9A抑制剂,它们显示出比PDE1C更高的选择性。优化后提供了临床前候选药物19,该药物在大鼠中表现出≥1的自由脑/游离血浆,并减少了微粒体清除率,并且具有增加大鼠CSF中环鸟苷单磷酸水平的能力。