Diphenyl Phosphonate Inhibitors for the Urokinase-Type Plasminogen Activator: Optimization of the P4 Position
摘要:
This paper describes the structure-activity relationship in a series of tripeptidyl diphenyl phosphonate irreversible urokinase plasminogen activator (uPA) inhibitors, originally derived from an arginyltripeptide. uPA is considered an interesting target in anticancer drug design. The selectivity of these inhibitors for uPA is enhanced by the optimization of the P4 position. The most interesting compound shows an IC50 of 5 nM, with a selectivity index of more than 3000 toward other Arg/Lys-specific proteases such as tissue-type plasminogen activator, plasmin, factor Xa, and thrombin. A synthetic strategy for the preparation of small libraries of diphenyl phosphonate analogues of capped tripeptides is described. It is shown that uPA is irreversibly inhibited, and interactions with the active site were modeled. Finally, a diparacetamol phosphonate analogue was developed to circumvent the release of cytotoxic phenol.
Diphenyl Phosphonate Inhibitors for the Urokinase-Type Plasminogen Activator: Optimization of the P4 Position
摘要:
This paper describes the structure-activity relationship in a series of tripeptidyl diphenyl phosphonate irreversible urokinase plasminogen activator (uPA) inhibitors, originally derived from an arginyltripeptide. uPA is considered an interesting target in anticancer drug design. The selectivity of these inhibitors for uPA is enhanced by the optimization of the P4 position. The most interesting compound shows an IC50 of 5 nM, with a selectivity index of more than 3000 toward other Arg/Lys-specific proteases such as tissue-type plasminogen activator, plasmin, factor Xa, and thrombin. A synthetic strategy for the preparation of small libraries of diphenyl phosphonate analogues of capped tripeptides is described. It is shown that uPA is irreversibly inhibited, and interactions with the active site were modeled. Finally, a diparacetamol phosphonate analogue was developed to circumvent the release of cytotoxic phenol.
Non-covalent inhibitors of urokinase and blood vessel formation
申请人:Wilex AG
公开号:EP1808440A1
公开(公告)日:2007-07-18
Novel compounds having activity as non-covalent inhibitors of urokinase and having activity in reducing or inhibiting blood vessel formation are provided. These compounds have P1 a group having an amidino or guanidino moiety or derivative thereof. These compounds are useful in vitro for monitoring plasminogen activator levels and in vivo in treatment of conditions which are ameliorated by inhibition of or decreased activity of urokinase and in treating pathologic conditions wherein blood vessel formation is related to a pathologic condition.
Diphenyl Phosphonate Inhibitors for the Urokinase-Type Plasminogen Activator: Optimization of the P4 Position
作者:Jurgen Joossens、Pieter Van der Veken、Georgiana Surpateanu、Anne-Marie Lambeir、Ibrahim El-Sayed、Omar M. Ali、Koen Augustyns、Achiel Haemers
DOI:10.1021/jm060622g
日期:2006.9.1
This paper describes the structure-activity relationship in a series of tripeptidyl diphenyl phosphonate irreversible urokinase plasminogen activator (uPA) inhibitors, originally derived from an arginyltripeptide. uPA is considered an interesting target in anticancer drug design. The selectivity of these inhibitors for uPA is enhanced by the optimization of the P4 position. The most interesting compound shows an IC50 of 5 nM, with a selectivity index of more than 3000 toward other Arg/Lys-specific proteases such as tissue-type plasminogen activator, plasmin, factor Xa, and thrombin. A synthetic strategy for the preparation of small libraries of diphenyl phosphonate analogues of capped tripeptides is described. It is shown that uPA is irreversibly inhibited, and interactions with the active site were modeled. Finally, a diparacetamol phosphonate analogue was developed to circumvent the release of cytotoxic phenol.