Disclosed herein is a process for forming an oligomer product comprising (a) introducing into a reaction zone (i) ethylene; (ii) a heteroatomic ligand metal salt complex comprising a heteroatomic ligand complexed to a first metal salt; (iii) a second metal salt wherein an equivalent molar ratio of the second metal salt to the heteroatomic ligand of the heteroatomic ligand metal salt complex is at least 0.5:1 and where the second metal salt is an iron salt, a cobalt salt, or any combination thereof; (iv) an organoaluminum compound; and (b) forming an oligomer product. Also disclosed herein is a process comprising (a) introducing into a reaction zone (i) ethylene; (ii) a heteroatomic ligand; (iii) a metal salt where an equivalent molar ratio of the metal salt to the heteroatomic ligand is at least 1.5:1; (iv) an organoaluminum compound; and (b) forming an oligomer product.
Disclosed herein is a process for forming an oligomer product comprising (a) introducing into a reaction zone (i) ethylene; (ii) a heteroatomic ligand metal salt complex comprising a heteroatomic ligand complexed to a first metal salt; (iii) a second metal salt wherein an equivalent molar ratio of the second metal salt to the heteroatomic ligand of the heteroatomic ligand metal salt complex is at least 0.5:1 and where the second metal salt is an iron salt, a cobalt salt, or any combination thereof; (iv) an organoaluminum compound; and (b) forming an oligomer product. Also disclosed herein is a process comprising (a) introducing into a reaction zone (i) ethylene; (ii) a heteroatomic ligand; (iii) a metal salt where an equivalent molar ratio of the metal salt to the heteroatomic ligand is at least 1.5:1; (iv) an organoaluminum compound; and (b) forming an oligomer product.
A process comprising a) contacting (i) ethylene, (ii) a catalyst system comprising 1) a heteroatomic ligand iron salt complex, or a heteroatomic ligand and an iron salt, (iii) hydrogen, and (iv) optionally an organic reaction medium; and b) forming an oligomer product wherein 1) the oligomer product has a Schulz-Flory K value from 0.4 to 0.8 and 2) the oligomer product comprises (a) less than 1 wt. % of polymer, (b) less than 1 wt. % compounds having greater than 70 carbon atoms, (c) less thanl wt. % compounds having a weight average molecular weight of greater than 1000 g/mol, or (d) any combination thereof wherein the weight percentage is based on the total weight of the oligomer product.
Ethylene Oligomerization Processes
申请人:Chevron Phillips Chemical Company LP
公开号:US20180186708A1
公开(公告)日:2018-07-05
A process comprising A) continuously introducing into a reaction zone i) ethylene, ii) an iron salt, iii) a pyridine bisimine, iv) an organoaluminum compound, and v) an organic reaction medium, and B) forming an oligomer product in the reaction zone, the reaction zone having i) an iron of the iron salt concentration in a range of 5×10
−4
mmol/kg to 5×10
−3
mmol/kg, ii) an aluminum of the organoaluminum compound to iron of the iron salt molar ratio in a range of 300:1 to 800:1, ii) an ethylene partial pressure in a range of 750 psig to 1200 psig, iv) an ethylene to organic reaction medium mass ratio in a range of 0.8 to 4.5, v) a temperature in a range of 75° C. to 95° C., and optionally vi) a hydrogen partial pressure of at least 5 psi.