摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(4aR,8aR)-1-phenylmethoxy-3,4,4a,5,6,7,8,8a-octahydro-2H-benzo[b]borinine | 878381-35-2

中文名称
——
中文别名
——
英文名称
(4aR,8aR)-1-phenylmethoxy-3,4,4a,5,6,7,8,8a-octahydro-2H-benzo[b]borinine
英文别名
——
(4aR,8aR)-1-phenylmethoxy-3,4,4a,5,6,7,8,8a-octahydro-2H-benzo[b]borinine化学式
CAS
878381-35-2
化学式
C16H23BO
mdl
——
分子量
242.169
InChiKey
PKOOEABJIYYLGA-JKSUJKDBSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.55
  • 重原子数:
    18
  • 可旋转键数:
    3
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.62
  • 拓扑面积:
    9.2
  • 氢给体数:
    0
  • 氢受体数:
    1

反应信息

  • 作为反应物:
    描述:
    1,1-二氯甲醚(4aR,8aR)-1-phenylmethoxy-3,4,4a,5,6,7,8,8a-octahydro-2H-benzo[b]borininelithium tert-butoxide双氧水sodium acetate 作用下, 以 乙醚正己烷四氢呋喃 为溶剂, 反应 7.0h, 以0.5 g的产率得到(+)-trans-1-decalone
    参考文献:
    名称:
    Chiral Synthesis via Organoboranes. 48. Efficient Synthesis of Trans-Fused Bicyclic and Cyclic Ketones and Secondary Alcohols in High Optical Purities via Asymmetric Cyclic Hydroboration with Isopinocampheylchloroborane Etherate
    摘要:
    Highly stereo- and enantioselective annelation has been achieved for the synthesis of trans-fused bicyclic and cyclic ketones via the asymmetric cyclic hydroboration of suitable cyclic dienes, such as 1-allyl-1-cycloalkenes or 1-vinyl-1-cycloalkenes and appropriate acyclic 1,4-dienes, respectively, with enantiomerically pure isopinocampheylchloroborane etherate (IpcBHCl . Et2O). The IpcBHCl . Et2O (an 86-90% equilibrium mixture) was readily synthesized by the reaction of an equivalent amount of hydrochloric acid in ethyl ether (Et2O) with optically pure isopinocampheylborane (IpcBH(2)). The hydroboration of the terminal double bond of a representative diene with IpcBHCl . Et2O readily provided the corresponding isopinocampheylalkylchloroborane (IpcRBCl). Subsequent, hydridation of the IpcRBCl with lithium aluminum hydride (LAH, 0.25 equiv) at -20 or -25 degrees C generated the intermediate isopinocampheylalkylborane (IpcRBH) almost instantly, which then underwent a rapid stereospecific and enantioselective intramolecular cyclic hydroboration to provide the intermediate cyclic trialkylborane. This trialkylborane, on treatment with an aldehyde, liberated the optically pure auxiliary as a-pinene (readily recovered for recycle) to provide the corresponding cyclic borinate ester. This ester reacted smoothly with alpha,alpha-dichloromethyl methyl ether (DCME) in the presence of a hindered base (the DCME reaction) to yield, after oxidation with buffered hydrogen peroxide, the trans-fused bicyclic or cyclic ketone in high enantiomeric excess (ee). In another improved approach, in situ generated IpcBHCl . Et2O, from the reduction of isopinocampheyldichloroborane (IpcBCl(2)) with trimethylsilane (Me3SiH), in the presence of representative dienes in Et2O provided considerably improved optical yields of the bicyclic and cyclic ketones. The trialkylboranes obtained from suitable acyclic dienes can be easily protonolyzed to provide the secondary alcohols in high ee.
    DOI:
    10.1021/jo981040c
  • 作为产物:
    参考文献:
    名称:
    Chiral Synthesis via Organoboranes. 48. Efficient Synthesis of Trans-Fused Bicyclic and Cyclic Ketones and Secondary Alcohols in High Optical Purities via Asymmetric Cyclic Hydroboration with Isopinocampheylchloroborane Etherate
    摘要:
    Highly stereo- and enantioselective annelation has been achieved for the synthesis of trans-fused bicyclic and cyclic ketones via the asymmetric cyclic hydroboration of suitable cyclic dienes, such as 1-allyl-1-cycloalkenes or 1-vinyl-1-cycloalkenes and appropriate acyclic 1,4-dienes, respectively, with enantiomerically pure isopinocampheylchloroborane etherate (IpcBHCl . Et2O). The IpcBHCl . Et2O (an 86-90% equilibrium mixture) was readily synthesized by the reaction of an equivalent amount of hydrochloric acid in ethyl ether (Et2O) with optically pure isopinocampheylborane (IpcBH(2)). The hydroboration of the terminal double bond of a representative diene with IpcBHCl . Et2O readily provided the corresponding isopinocampheylalkylchloroborane (IpcRBCl). Subsequent, hydridation of the IpcRBCl with lithium aluminum hydride (LAH, 0.25 equiv) at -20 or -25 degrees C generated the intermediate isopinocampheylalkylborane (IpcRBH) almost instantly, which then underwent a rapid stereospecific and enantioselective intramolecular cyclic hydroboration to provide the intermediate cyclic trialkylborane. This trialkylborane, on treatment with an aldehyde, liberated the optically pure auxiliary as a-pinene (readily recovered for recycle) to provide the corresponding cyclic borinate ester. This ester reacted smoothly with alpha,alpha-dichloromethyl methyl ether (DCME) in the presence of a hindered base (the DCME reaction) to yield, after oxidation with buffered hydrogen peroxide, the trans-fused bicyclic or cyclic ketone in high enantiomeric excess (ee). In another improved approach, in situ generated IpcBHCl . Et2O, from the reduction of isopinocampheyldichloroborane (IpcBCl(2)) with trimethylsilane (Me3SiH), in the presence of representative dienes in Et2O provided considerably improved optical yields of the bicyclic and cyclic ketones. The trialkylboranes obtained from suitable acyclic dienes can be easily protonolyzed to provide the secondary alcohols in high ee.
    DOI:
    10.1021/jo981040c
点击查看最新优质反应信息

文献信息

  • Chiral Synthesis via Organoboranes. 48. Efficient Synthesis of <i>Trans</i>-Fused Bicyclic and Cyclic Ketones and Secondary Alcohols in High Optical Purities via Asymmetric Cyclic Hydroboration with Isopinocampheylchloroborane Etherate
    作者:Ulhas P. Dhokte、Pradip M. Pathare、Verinder K. Mahindroo、Herbert C. Brown
    DOI:10.1021/jo981040c
    日期:1998.11.1
    Highly stereo- and enantioselective annelation has been achieved for the synthesis of trans-fused bicyclic and cyclic ketones via the asymmetric cyclic hydroboration of suitable cyclic dienes, such as 1-allyl-1-cycloalkenes or 1-vinyl-1-cycloalkenes and appropriate acyclic 1,4-dienes, respectively, with enantiomerically pure isopinocampheylchloroborane etherate (IpcBHCl . Et2O). The IpcBHCl . Et2O (an 86-90% equilibrium mixture) was readily synthesized by the reaction of an equivalent amount of hydrochloric acid in ethyl ether (Et2O) with optically pure isopinocampheylborane (IpcBH(2)). The hydroboration of the terminal double bond of a representative diene with IpcBHCl . Et2O readily provided the corresponding isopinocampheylalkylchloroborane (IpcRBCl). Subsequent, hydridation of the IpcRBCl with lithium aluminum hydride (LAH, 0.25 equiv) at -20 or -25 degrees C generated the intermediate isopinocampheylalkylborane (IpcRBH) almost instantly, which then underwent a rapid stereospecific and enantioselective intramolecular cyclic hydroboration to provide the intermediate cyclic trialkylborane. This trialkylborane, on treatment with an aldehyde, liberated the optically pure auxiliary as a-pinene (readily recovered for recycle) to provide the corresponding cyclic borinate ester. This ester reacted smoothly with alpha,alpha-dichloromethyl methyl ether (DCME) in the presence of a hindered base (the DCME reaction) to yield, after oxidation with buffered hydrogen peroxide, the trans-fused bicyclic or cyclic ketone in high enantiomeric excess (ee). In another improved approach, in situ generated IpcBHCl . Et2O, from the reduction of isopinocampheyldichloroborane (IpcBCl(2)) with trimethylsilane (Me3SiH), in the presence of representative dienes in Et2O provided considerably improved optical yields of the bicyclic and cyclic ketones. The trialkylboranes obtained from suitable acyclic dienes can be easily protonolyzed to provide the secondary alcohols in high ee.
查看更多

同类化合物

锡杂环戊-3-烯-2,5-二酮 过氧化锌 磷英,3-甲基-2-(三甲基甲锡烷基)- 磷杂蒽 磷杂苯 磷杂环戊磷酸 磷杂环戊烷 碳化钙 法硼巴坦 氮杂锡杂两面针碱 氧化苯砷 异磷啉 四氧化三铅 八氢[1,2]氮杂硼杂苯并[1,2-a][1,2]氮杂硼杂苯 全氢化-9b-硼杂非那烯 二苯胺氯胂 二氧化铝 [1,2]氮杂硼杂苯并[1,2-a][1,2]氮杂硼杂苯 N,N-二甲基-9-硼杂双环[3.3.1]壬烷-9-胺 B-苄基-9-硼杂双环[3.3.1]壬烷 9-苯基-9-硼杂双环[3.3.1]壬烷 9-磷杂二环[4.2.1]壬烷 9-碘-9-硼杂二环[3.3.1]壬烷 9-硼杂双环[3.3.1]壬烷-9-醇 9-硼双环[3.3.1]壬烷 9-硬脂基-9-磷杂双环[4.2.1]壬烷 9-甲基-10-硝基蒽 9-溴-9-硼杂双环-[3.3.1]壬烷 9-二十烷基-9-磷杂二环[4.2.1]壬烷 9-乙基-9-硼杂双环[3.3.1]壬烷 9-丁基-9-硼杂双环[3.3.1]壬烷 9-(八氢-1-戊搭烯基)-9-磷杂双环[4.2.1]壬烷 9-(1,1,2-三甲基丙氧基)-9-硼双环[3.3.1]壬烷 8-甲氧基-9-硼杂双环[3.3.1]壬烷 5H-二苯并砷唑-5-甲腈 5H,5'H-10,10'-联啡砷 5-羟基-5H-二苯并砷唑 5-氧化物 5-氯-5H-二苯并砷杂环戊二烯 5,10-二氢-10-吩砒嗪乙醇10-硫化物 4,5-二氢-1-甲基-1H-磷杂环戊二烯-2-羧酸 1-氧化物 3-甲基异磷啉 3,5-二苯基膦 2-乙基-4,5-二甲基-1,2-氧杂环戊硼烷 2-丙烯酸,3-[3-乙基-2-[2-(3-乙基-4-羰基-2-硫代-5-噻唑烷亚基)亚乙基]-2,3-二氢-6-苯并噻唑基]- 2,4,6-三叔丁基-膦咛 2,4,6-三(苯基)膦咛 2,3-二氢-1H-磷杂环戊二烯 2,3-二氢-1-羟基-1H-磷杂环戊二烯 1-氧化物 2,3-二氢-1-甲基-1H-膦 1-氧化物 2,3,5,6-四苯基磷杂苯