(o‐Alkylbenzoyl)phosphonates readily cyclize to highly strained benzocyclobutenols simply upon irradiation with UV light. The remarkable efficiency is ascribed to the electron‐accepting character of the phosphonate substituent, which facilitates thermal ring closing of the o‐quinodimethane intermediate and suppresses reversion to the starting carbonyl compound.
Inhibition of coronavirus (CoV)‐encoded papain‐like cysteine proteases (PLpro) represents an attractive strategy to treat infections by these important human pathogens. Herein we report on structure‐activity relationships (SAR) of the noncovalent active‐site directed inhibitor (R)‐5‐amino‐2‐methyl‐N‐(1‐(naphthalen‐1‐yl)ethyl) benzamide (2 b), which is known to bind into the S3 and S4 pockets of the
抑制冠状病毒(CoV)编码的木瓜蛋白酶样半胱氨酸蛋白酶(PL pro )是治疗这些重要人类病原体感染的一种有吸引力的策略。在此,我们报告了非共价活性位点定向抑制剂 ( R )-5-氨基-2-甲基-N-(1-(萘-1-基)乙基)苯甲酰胺的构效关系 (SAR) ( 2 b ) ,已知它会结合到 SARS-CoV PL pro的 S3 和 S4 口袋中。此外,我们报告发现异吲哚啉是一类新的有效 PL前体抑制剂。这些研究还提供了对该抑制剂类的结合模式的更深入的了解。重要的是,这些抑制剂还被证实能够抑制细胞培养中的 SARS-CoV-2 复制,这表明,由于目标蛋白酶的结构高度相似,针对 SARS-CoV PL pro鉴定的抑制剂是开发新的泛型抑制剂的宝贵起点。 ‐冠状病毒抑制剂。
Synthetic Approach to Benzocyclobutenones Using Visible Light and a Phosphonate Auxiliary
Reported herein is a two-step procedure to synthesize benzocyclobutenones from (o-alkylbenzoyl)-phosphonates. It consists of a visible-light-driven cyclization reaction forming phosphonate-substituted benzocyclobutenols and subsequent elimination reaction of the H-phosphonate, which assumes a key role as the recyclable auxiliary. A wide variety of functionalized benzocyclobutenones, which include those difficult to synthesize by conventional methods, are efficiently synthesized.