摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

24-methyl 3α-(methylsulfonyl)oxy-7β-acetoxy-5β-cholanoate | 936215-34-8

中文名称
——
中文别名
——
英文名称
24-methyl 3α-(methylsulfonyl)oxy-7β-acetoxy-5β-cholanoate
英文别名
——
24-methyl 3α-(methylsulfonyl)oxy-7β-acetoxy-5β-cholanoate化学式
CAS
936215-34-8
化学式
C28H46O7S
mdl
——
分子量
526.735
InChiKey
KSEVAFYJVSEKSI-AUEDEMTRSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    5.12
  • 重原子数:
    36.0
  • 可旋转键数:
    7.0
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.93
  • 拓扑面积:
    95.97
  • 氢给体数:
    0.0
  • 氢受体数:
    7.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Novel liver-specific nitric oxide (NO) releasing drugs with bile acid as both NO carrier and targeting ligand
    摘要:
    Novel liver-specific nitric oxide (NO) releasing drugs with bile acid as both the NO carrier and targeting ligand were designed and synthesized by direct nitration of the hydroxyl group in bile acids or the 3-O-hydroxyl alkyl derivatives, with the intact 24-COOH being preserved for hepatocyte specific recognition. Preliminary biological evaluation revealed that oral administrated targeted conjugates could protect mice against acute liver damage induced by acetaminophen or carbon tetrachloride. The nitrate level in the liver significantly increased after oral administration of 1e while nitrate level in the blood did not significantly change. Co-administration of ursodeoxycholic acid (UDCA) significantly antagonized the increase of nitrate in the liver resulted by administration of 1e. (C) 2014 Hui-Fen Wang and Bo-Hua Zhong. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
    DOI:
    10.1016/j.cclet.2014.04.001
  • 作为产物:
    参考文献:
    名称:
    Novel liver-specific nitric oxide (NO) releasing drugs with bile acid as both NO carrier and targeting ligand
    摘要:
    Novel liver-specific nitric oxide (NO) releasing drugs with bile acid as both the NO carrier and targeting ligand were designed and synthesized by direct nitration of the hydroxyl group in bile acids or the 3-O-hydroxyl alkyl derivatives, with the intact 24-COOH being preserved for hepatocyte specific recognition. Preliminary biological evaluation revealed that oral administrated targeted conjugates could protect mice against acute liver damage induced by acetaminophen or carbon tetrachloride. The nitrate level in the liver significantly increased after oral administration of 1e while nitrate level in the blood did not significantly change. Co-administration of ursodeoxycholic acid (UDCA) significantly antagonized the increase of nitrate in the liver resulted by administration of 1e. (C) 2014 Hui-Fen Wang and Bo-Hua Zhong. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
    DOI:
    10.1016/j.cclet.2014.04.001
点击查看最新优质反应信息

文献信息

  • Bile acid toxicity structure–activity relationships: Correlations between cell viability and lipophilicity in a panel of new and known bile acids using an oesophageal cell line (HET-1A)
    作者:Ruchika Sharma、Ferenc Majer、Vijaya Kumar Peta、Jun Wang、Ray Keaveney、Dermot Kelleher、Aideen Long、John F. Gilmer
    DOI:10.1016/j.bmc.2010.07.030
    日期:2010.9
    The molecular mechanisms and interactions underlying bile acid cytotoxicity are important to understand for intestinal and hepatic disease treatment and prevention and the design of bile acid-based therapeutics.Bile acid lipophilicity is believed to be an important cytotoxicity determinant but the relationship is not well characterized. In this study we prepared new azido and other lipophilic BAs and altogether assembled a panel of 37 BAs with good dispersion in lipophilicity as reflected in RPTLC R-Mw. The MTT cell viability assay was used to assess cytotoxicity over 24 h in the HET-1A cell line (oesophageal). RMw values inversely correlated with cell viability for the whole set (r(2) = 0.6) but this became more significant when non-acid compounds were excluded (r(2) = 0.82, n = 29). The association in more homologous subgroups was stronger still (r(2) > 0.96). None of the polar compounds were cytotoxic at 500 mu M, however, not all lipophilic BAs were cytotoxic. Notably, apart from the UDCA primary amide, lipophilic neutral derivatives of UDCA were not cytotoxic. Finally, CDCA, DCA and LagoDCA were prominent outliers being more toxic than predicted by R-Mw. In a hepatic carcinoma line, lipophilicity did not correlate with toxicity except for the common naturally occurring bile acids and their conjugates. There were other significant differences in toxicity between the two cell lines that suggest a possible basis for selective cytotoxicity. The study shows: (i) azido substitution in BAs imparts lipophilicity and toxicity depending on orientation and ionizability; (ii) there is an inverse correlation between R-Mw and toxicity that has good predictive value in homologous sets; (iii) lipophilicity is a necessary but apparently not sufficient characteristic for BA cytocidal activity to which it appears to be indirectly related. (C) 2010 Elsevier Ltd. All rights reserved.
查看更多

同类化合物

(5β)-17,20:20,21-双[亚甲基双(氧基)]孕烷-3-酮 (5α)-2′H-雄甾-2-烯并[3,2-c]吡唑-17-酮 (3β,20S)-4,4,20-三甲基-21-[[[三(异丙基)甲硅烷基]氧基]-孕烷-5-烯-3-醇-d6 (25S)-δ7-大发酸 (20R)-孕烯-4-烯-3,17,20-三醇 (11β,17β)-11-[4-({5-[(4,4,5,5,5-五氟戊基)磺酰基]戊基}氧基)苯基]雌二醇-1,3,5(10)-三烯-3,17-二醇 齐墩果酸衍生物1 黄麻属甙 黄芪皂苷III 黄芪皂苷 II 黄芪甲苷 IV 黄芪甲苷 黄肉楠碱 黄果茄甾醇 黄杨醇碱E 黄姜A 黄夹苷B 黄夹苷 黄夹次甙乙 黄夹次甙乙 黄夹次甙丙 黄体酮环20-(乙烯缩醛) 黄体酮杂质EPL 黄体酮杂质1 黄体酮杂质 黄体酮杂质 黄体酮EP杂质M 黄体酮EP杂质G(RRT≈2.53) 黄体酮EP杂质F 黄体酮6-半琥珀酸酯 黄体酮 17alpha-氢过氧化物 黄体酮 11-半琥珀酸酯 黄体酮 麦角甾醇葡萄糖苷 麦角甾醇氢琥珀酸盐 麦角甾烷-6-酮,2,3-环氧-22,23-二羟基-,(2b,3b,5a,22R,23R,24S)-(9CI) 麦角甾烷-3,6,8,15,16-五唑,28-[[2-O-(2,4-二-O-甲基-b-D-吡喃木糖基)-a-L-呋喃阿拉伯糖基]氧代]-,(3b,5a,6a,15b,16b,24x)-(9CI) 麦角甾烷-26-酸,5,6:24,25-二环氧-14,17,22-三羟基-1-羰基-,d-内酯,(5b,6b,14b,17a,22R,24S,25S)-(9CI) 麦角甾-8-烯-3-醇 麦角甾-8,24(28)-二烯-26-酸,7-羟基-4-甲基-3,11-二羰基-,(4a,5a,7b,25S)- 麦角甾-7,22-二烯-3-酮 麦角甾-7,22-二烯-17-醇-3-酮 麦角甾-5,24-二烯-26-酸,3-(b-D-吡喃葡萄糖氧基)-1,22,27-三羟基-,d-内酯,(1a,3b,22R)- 麦角甾-5,22,25-三烯-3-醇 麦角甾-4,6,8(14),22-四烯-3-酮 麦角甾-1,4-二烯-3-酮,7,24-二(乙酰氧基)-17,22-环氧-16,25-二羟基-,(7a,16b,22R)-(9CI) 麦角固醇 麦冬皂苷D 麦冬皂苷D 麦冬皂苷 B