A gold (Au) single-atom catalyst (SAC) supported on amino-functionalized graphdiyne was synthesized, which displayed a fivefold higher catalytic activity than the Au SAC supported on graphdiyne. Experimental and computational studies reveal that the amino groups in the second sphere of the Au atom serve as proton relays to facilitate the H2 formation from an Au−H intermediate, thus substantially accelerating
合成了一种负载在氨基功能化石墨二炔上的金 (Au) 单原子催化剂 (SAC),其催化活性比负载在石墨二炔上的 Au SAC 高五倍。实验和计算研究表明,Au 原子第二个球体中的氨基充当质子中继,促进 Au-H 中间体形成 H 2,从而显着加快甲酸脱氢速率。
A flame-retardant compound, a process for forming a flame-retardant compound, and an article of manufacture comprising a material containing a flame-retardant polyetheretherketone based polymer are disclosed. The flame-retardant compound includes two or more polyetheretherketone polymer chains and at least one flame-retardant aryl diamine cross-linker moiety, wherein the flame-retardant aryl diamine cross-linker moiety contains at least one flame-retardant functional group. The process includes selecting a flame-retardant aryl diamine, wherein the flame-retardant aryl diamine contains at least one flame-retardant functional group, selecting a polyetheretherketone polymer, and reacting the flame-retardant aryl diamine with the polyetheretherketone polymer to form a flame-retardant polyetheretherketone based polymer having flame-retardant aryl diamine cross-linkers, wherein the flame-retardant aryl diamine cross-linkers contain the at least one flame-retardant functional group. The article of manufacture includes a material containing a flame-retardant polyetheretherketone based polymer having flame-retardant aryl diamine cross-linkers.
A flame-retardant compound, a process for forming a flame-retardant compound, and an article of manufacture comprising a material containing a flame-retardant polyetheretherketone based polymer are disclosed. The flame-retardant compound includes two or more polyetheretherketone polymer chains and at least one flame-retardant aryl diamine cross-linker moiety, wherein the flame-retardant aryl diamine cross-linker moiety contains at least one flame-retardant functional group. The process includes selecting a flame-retardant aryl diamine, wherein the flame-retardant aryl diamine contains at least one flame-retardant functional group, selecting a polyetheretherketone polymer, and reacting the flame-retardant aryl diamine with the polyetheretherketone polymer to form a flame-retardant polyetheretherketone based polymer having flame-retardant aryl diamine cross-linkers, wherein the flame-retardant aryl diamine cross-linkers contain the at least one flame-retardant functional group. The article of manufacture includes a material containing a flame-retardant polyetheretherketone based polymer having flame-retardant aryl diamine cross-linkers.