[RuHClL2]2, L = PiPr3, reacts with H2CCH(O2CR)
(R = CH3, CF3, C6H5) during mixing at 20 °C, via two observable intermediates, to give RuCl(O2CR)(CHMe)L2; this carbene complex then redistributes the Cl and O2CR groups. Vinyl tosylate gives RuCl(OTs)(CHMe)L2 already at −60 °C. Vinyl chloroformate, H2CCH(O2CCl) reacts rapidly with [RuHClL2]2 to give the olefin metathesis catalyst RuCl2(CHMe)L2 and CO2. Os(H)3ClL2
(L = PiPr3 or PtBu2Me) reacts with vinyl esters H2CCHE (E = O2CR) to form first an η2-olefin adduct. This is followed by C/O bond cleavage, giving the carbyne OsHCl(O2CCF3)(CMe)L2. Vinyl chloroformate and Os(H)3ClL2 gives OsHCl2(CMe)L2 and CO2. RuHCl(PPh3)3 reacts with vinyl chloroformate, via RuCl(O2CCl)(CHMe)(PPh3)2, to give RuCl2(CHMe)(PPh3)2 while OsHCl(PPh3)3 reacts analogously, through observable OsCl2(CHMe)(PPh3)2, to form OsHCl2(CMe)(PPh3)2. Vinyl trifluoroacetate converts OsHCl(PPh3)3, to OsHCl(O2CCF3)(CMe)(PPh3)2. The less π-basic metal in OsH(CO)(PtBu2Me)2+ reacts with vinyl esters to give only an olefin adduct; detectable binding of the ester oxygen to Os in this adduct suggests a mechanism for carboxylate migration from carbene carbon to metal. The mechanisms of these reactions are explored, and the thermodynamic disparity between Ru and Os is discussed. DFT (B3PW91) calculations have been carried out to establish the energy pattern of possible products. The thermodynamic preference for cleaving the C–O2CR bond is shown to have a thermodynamic origin associated with the energy of the formed Ru–O2CR bond. The calculations also indicate the very large thermodynamic driving force for loss of CO2 in the case of H2CCH(O2CCl). The corresponding loss of CO2 is shown to be thermodynamically unfavorable in the case of H2CCH(O2CR). The energy of the Ru-R bond is a key factor.
[RuHCl
L2]2,L = PiPr3,在 20 °C下与 H2CCH(O2CR)(R =
CH3、
CF3、
C6H5)发生反应,通过两个可观察到的中间产物,得到 RuCl(O2CR)(CHMe)
L2;这个碳烯络合物随后重新分配了 Cl 和 O2CR 基团。
对甲苯磺酸乙烯酯在-60 °C时就能得到 RuCl(OTs)(CHMe)
L2。
氯甲酸乙烯酯 H2CCH(O2CCl) 与 [RuHCl
L2]2 快速反应,生成烯烃偏聚催化剂 RuC
L2(CHMe)
L2 和
CO2。Os(H)3Cl
L2(L = PiPr3 或 PtBu2Me)与
乙烯基酯 H2CCHE(E = O2CR)反应,首先生成η2-烯烃加合物。随后,C/O 键发生裂解,生成邻碳化合物 OsHCl(O2C )(CMe)
L2。
氯甲酸乙烯酯和 Os(H)3Cl
L2 生成 OsHC
L2(CMe)
L2 和 。RuHCl(PPh3)3 通过 RuCl(O2CCl)(CHMe)(PPh3)2 与
氯甲酸乙烯酯反应,生成 RuC
L2(CHMe)(PPh3)2,而 OsHCl(PPh3)3 通过可观察到的 OsC
L2(CHMe)(PPh3)2,发生类似反应,生成 OsHC
L2(CMe)(PPh3)2。
三氟乙酸乙烯酯将 OsHCl(PPh3)3 转化为 OsHCl(O2C )(CMe)(PPh3)2。OsH(CO)(PtBu2Me)2+中π基含量较低的
金属与
乙烯基酯发生反应,只生成一种烯烃加合物;在这种加合物中可检测到酯氧与 Os 的结合,这表明羧基从碳到
金属的迁移机制。本文探讨了这些反应的机理,并讨论了 Ru 和 Os 之间的热力学差异。通过 DFT(B3PW91)计算,确定了可能产物的能量模式。结果表明,裂解 C-O2CR 键的热力学偏好与所形成的 Ru-O2CR 键的能量有关。计算还表明,在 H2CCH(O2CCl) 的情况下,
二氧化碳损失的热力学驱动力非常大。在 H2CCH(O2CR) 的情况下,相应的 损失在热力学上是不利的。Ru-R 键的能量是一个关键因素。