摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-(4,6-dimethylpyridin-2-yl)-1H-imidazole-1-carbothioamide | 381666-16-6

中文名称
——
中文别名
——
英文名称
N-(4,6-dimethylpyridin-2-yl)-1H-imidazole-1-carbothioamide
英文别名
N-(4,6-dimethylpyridin-2-yl)imidazole-1-carbothioamide
N-(4,6-dimethylpyridin-2-yl)-1H-imidazole-1-carbothioamide化学式
CAS
381666-16-6
化学式
C11H12N4S
mdl
——
分子量
232.309
InChiKey
GZHJZRQRADIKRT-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    397.5±52.0 °C(Predicted)
  • 密度:
    1.25±0.1 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    1.9
  • 重原子数:
    16
  • 可旋转键数:
    1
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.18
  • 拓扑面积:
    74.8
  • 氢给体数:
    1
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    描述:
    N-(4,6-dimethylpyridin-2-yl)-1H-imidazole-1-carbothioamide 、 2-(5-Iodothiophen-2-yl)ethan-1-amine hydrochloride 在 potassium carbonate 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 反应 24.0h, 生成 N-[2-(5-iodothiophen-2-yl)ethyl]-N'-(4,6-dimethyl-2-pyridyl)thiourea
    参考文献:
    名称:
    Regiospecific Synthesis of 5‐Halo‐substituted Thiophene Pyridyl Thiourea Compounds as Non‐nucleoside Inhibitors of HIV‐1 Reverse Transcriptase
    摘要:
    The regiospecific synthesis of 5-halothiophenethylamines and halosubstituted phenylethyl thioureas was accomplished with an overall yield of 45 - 60%. Condensation of t-boc protected 2-thiophenethylamine with N-halo succinamide in dimethylformamide furnished the desired halo-substituted thiophenethylamines. These thiophenethyl amines were further converted into biologically active thiourea compounds using thiocarbonyldiimidazole chemistry. Several of the halo-substituted thiophene pyridyl thiourea compounds inhibited HIV-1 reverse transcriptase (RT) at nanomolar concentrations.
    DOI:
    10.1081/scc-120039499
  • 作为产物:
    参考文献:
    名称:
    作为 HIV-1 逆转录酶非核苷抑制剂的 β-氟代苯乙基卤代吡啶基硫脲化合物的合成
    摘要:
    摘要 β-氟苯乙胺的合成分三步完成,总产率为50%。β-氟苯乙胺盐酸盐与卤代吡啶基胺衍生的硫代羰基咪唑衍生物在二甲基甲酰胺中缩合得到所需的硫脲化合物,为结晶固体。几种 β-氟苯乙基硫脲化合物在纳摩尔至低微摩尔浓度下抑制 HIV-1 逆转录酶 (RT)。
    DOI:
    10.1081/scc-120039500
点击查看最新优质反应信息

文献信息

  • Inhibitors of phosphoglycerate dehydrogenase (PHGDH) and uses thereof
    申请人:Whitehead Institute for Biomedical Research
    公开号:US11225469B2
    公开(公告)日:2022-01-18
    The present invention provides compounds of Formula (II), and pharmaceutically acceptable salts, solvates, hydrates, polymorphs, co-crystals, tautomers, stereoisomers, isotopically labeled derivatives, pro-drugs, and compositions thereof. Also provided are methods and kits involving the compounds of Formula (I), (II) or (III) for treating diseases associated with the over-expression of phosphoglycerate dehydrogenase (PHGDH) in a subject, such as proliferative diseases (e.g., cancers (e.g., breast cancer, ER negative breast cancer, melanoma, cervical cancer), benign neoplasms, diseases associated with angiogenesis, inflammatory diseases, autoinflammatory diseases, and autoimmune diseases). Treatment of a subject with a proliferative disease using a compound or composition of the invention may inhibit the activity of PHGDH or inhibit the serine biosynthetic pathway, or both.
    本发明提供了式(II)化合物及其药学上可接受的盐、溶液剂、合物、多晶型、共晶体、同分异构体、立体异构体、同位素标记的衍生物、原药及其组合物。还提供了涉及式(I)、(II)或(III)化合物的方法和试剂盒,用于治疗与受试者体内磷酸甘油脱氢酶(PHGDH)过度表达有关的疾病,如增殖性疾病(如癌症(如乳腺癌、ER阴性乳腺癌、黑色素瘤、宫颈癌)、良性肿瘤、与血管生成有关的疾病、炎症性疾病、自身炎症性疾病和自身免疫性疾病)。使用本发明的化合物或组合物治疗增殖性疾病患者,可抑制 PHGDH 的活性或抑制丝氨酸生物合成途径,或两者兼而有之。
  • 4-(3-Chloro-5-(trifluoromethyl)pyridin-2-yl)-<i>N</i>-(4-methoxypyridin-2-yl)piperazine-1-carbothioamide (ML267), a Potent Inhibitor of Bacterial Phosphopantetheinyl Transferase That Attenuates Secondary Metabolism and Thwarts Bacterial Growth
    作者:Timothy L. Foley、Ganesha Rai、Adam Yasgar、Thomas Daniel、Heather L. Baker、Matias Attene-Ramos、Nicolas M. Kosa、William Leister、Michael D. Burkart、Ajit Jadhav、Anton Simeonov、David J. Maloney
    DOI:10.1021/jm401752p
    日期:2014.2.13
    4'-Phosphopantetheinyl transferases (PPTases) catalyze a post-translational modification essential to bacterial cell viability and virulence. We present the discovery and medicinal chemistry optimization of 2-pyridinyl-N-(4-aryl)-piperazine-1-carbothioamides, which exhibit submicromolar inhibition of bacterial Sfp-PPTase with no activity toward the human orthologue. Moreover, compounds within this class possess antibacterial activity in the absence of a rapid cytotoxic response in human cells. An advanced analogue of this series, ML267 (55), was found to attenuate production of an Sfp-PPTase-dependent metabolite when applied to Bacillus subtilis at sublethal doses. Additional testing revealed antibacterial activity against methicillin-resistant Staphylococcus aureus, and chemical genetic studies implicated efflux as a mechanism for resistance in Escherichia coli. Additionally, we highlight the in vitro absorption, distribution, metabolism; and excretion and in vivo pharmacokinetic profiles of compound 55 to further demonstrate the potential utility of this small-molecule inhibitor.
  • Effect of stereo and regiochemistry towards wild and multidrug resistant HIV-1 virus: viral potency of chiral PETT derivatives
    作者:Taracad K. Venkatachalam、Chen Mao、Fatih M. Uckun
    DOI:10.1016/j.bcp.2004.01.019
    日期:2004.5
    Chiral derivatives of several substituted halopyridyl and thiazolyl PETT compounds were synthesized as non-nucleoside inhibitors of the reverse transcriptase (RT) enzyme of the human immunodeficiency virus (HIV- 1). Molecular modeling studies indicated that because of the asymmetric geometry of the non-nucleoside inhibitors (NNRTI) binding pocket, the 'R' stercoisomers would fit the NNRTI binding pocket of the HIV-1 RT much better than the corresponding 'S' stereoisomers, as reflected by their 10(4)-fold lower K-i values. The 'R' stereoisomers of several PETT derivatives inhibited the recombinant RT in vitro with lower IC50 values than their enantiomers. The active compounds were further evaluated for their ability to inhibit HIV-1 replication in human peripheral blood mononuclear cells (PBMCs). All the 'R' isomers again showed potent anti-HIV activity and inhibited the replication of the HIV-1 strains HTLVIIIB in PBMCs at nanomolar concentrations whereas their enantiomers were less potent. The lead compounds for the respective groups were further tested against A17 (NNRTI-resistant, Y181C mutant RT), and A17Var (NNI-resistant Y181C +/- K103N mutant RT) as well as multidrug resistant viral strains. The results indicated that the lead compounds were several logs more potent than the standard NNRTI drug nevirapine. Structure-activity relationship among the derivatives showed preference of pyridyl unit with halo substitutions primarily at 5-position demonstrating the importance of both the stereochemistry as well as regiochemistry. Our data provides experimental evidence that the stereochemistry and the regiochemistry of non-nucleoside inhibitors can profoundly affect their anti-HIV activity. (C) 2004 Elsevier Inc. All rights reserved.
  • Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds
    作者:T.K Venkatachalam、C Mao、Fatih.M Uckun
    DOI:10.1016/j.bmc.2004.04.050
    日期:2004.8.1
    Chiral derivatives of several substituted halopyridyl and thiazolyl PETT compounds were synthesized as non-nucleoside inhibitors of the reverse transcriptase (RT) enzyme (NNRTI) of the human immunodeficiency virus (HIV-1). Molecular modeling studies indicated that because of the asymmetric geometry of the NNRTI binding pocket, the R stereoisomers would fit the NNRTI binding pocket of the HIV-1 RT much better than the corresponding S stereoisomers, as reflected by their 10(4)-fold lower K-i values. The R stereoisomers of several PETT derivatives inhibited recombinant RT in vitro with lower IC50 values than their enantiomers. The active compounds were further evaluated for their ability to inhibit HIV-1 replication in human peripheral blood mononuclear cells (PBMC). All the R isomers once again showed potent anti-HIV activity and inhibited the replication of the HIV-1 strain HTLVIIIB in peripheral blood mononuclear cells (PBMC) at nanomolar concentrations whereas their enantiomers were substantially less potent. The lead compounds in the respective groups were further tested against the NNRTI-resistant HIV strains, A17 (Y181C mutant), and A17Var (YISIC+K103N mutant) and RT MDR (V106N). The results showed that the lead compounds were several logs more potent than the standard NNRTI nevirapine. Structure-activity relationship studies also revealed a preference for the pyridyl unit with halo substitutions primarily at 5-position demonstrating the importance of regiochemistry. Our data provides experimental evidence that the stereochemistry as well as regiochemistry of NNRTI can profoundly affect their anti-HIV activity. (C) 2004 Elsevier Ltd. All rights reserved.
  • Substituted heterocyclic thiourea compounds as a new class of anti-allergic agents inhibiting IgE/FcεRI receptor mediated mast cell leukotriene release
    作者:T.K Venkatachalam、S Qazi、P Samuel、F.M Uckun
    DOI:10.1016/s0968-0896(02)00531-x
    日期:2003.3
    Mast cell derived leukotrienes (LT's) play a vital role in pathophysiology of allergy and asthma. We synthesized various analogues of indolyl, naphthyl and phenylethyl substituted halopyridyl, thiazolyl and benzothiazolyl thioureas and examined their in vitro effects on the high affinity IgE receptor/FcepsilonRI-mediated mast cell leukotriene release. Of the 22 naphthylethyl thiourea compounds tested, there were 7 active compounds and N-[1-(1-naphthyl)ethyl]-N'-[2-(ethyl-4-acetylthiazolyl)]thiourea (17 and 16) (IC50=0.002 muM) and N-[1-(1R)-naphthylethyl]-N'-[2-(5-methylpyridyl)]thiourea (compound 5) (IC50 = 0.005 muM) were identified as the lead compounds. Among the 1l indolylethyl thiourea compounds tested, there were seven active compounds and the halopyridyl compounds N-[2-(3-indolylethyl)]-N'-[2-(5-chloropyridyl)lthiourea (24) and N-[2-(3-indolylethyl)]-N'-[2-(5-bromopyridyl)]thiourea (25) were the most active agents and inhibited the LTC4 release with low micromolar IC50 values of 4.9 and 6.1 PM, respectively. The hydroxylphenyl substituted compounds N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(5-chloropyridyl)]thiourea (37; IC50 = 12.6muM), N-[2-(4-hydroxyphenyl)ethyll-AT-[2-(5-bromopyridyl)]thiourea (50; IC50 16.8 muM) and N-[2-(4-hydroxyphenyl)ethyl]-N'-[2-(pyridyl)]thiourea (35; IC50 = 8.5muM) were the most active pyridyl thiourea agents. Notably, the introduction of electron withdrawing or donating groups had a marked impact on the biological activity of these thiourea derivatives and the Hammett sigma values of their substituents were identified as predictors of their potency. In contrast, experimentally determined partition coefficient values did not correlate with the biological activity of the thiourea compounds which demonstrates that their liphophilicity is not an important factor controlling their mast cell inhibitory effects. These results establish the substituted halopyridyl, indolyl and naphthyl thiourea compounds as a new chemical class of anti-allergic agents inhibiting IgE receptor/FcepsilonRI-mediated mast cell LTC4 release. Further lead optimization efforts may provide the basis for new and effective treatment as well as prevention programs for allergic asthma in clinical settings. (C) 2003 Elsevier Science Ltd. All rights reserved.
查看更多

同类化合物

(S)-氨氯地平-d4 (R,S)-可替宁N-氧化物-甲基-d3 (R)-(+)-2,2'',6,6''-四甲氧基-4,4''-双(二苯基膦基)-3,3''-联吡啶(1,5-环辛二烯)铑(I)四氟硼酸盐 (R)-N'-亚硝基尼古丁 (R)-DRF053二盐酸盐 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (2S,2'S)-(-)-[N,N'-双(2-吡啶基甲基]-2,2'-联吡咯烷双(乙腈)铁(II)六氟锑酸盐 (2S)-2-[[[9-丙-2-基-6-[(4-吡啶-2-基苯基)甲基氨基]嘌呤-2-基]氨基]丁-1-醇 (2R,2''R)-(+)-[N,N''-双(2-吡啶基甲基)]-2,2''-联吡咯烷四盐酸盐 (1'R,2'S)-尼古丁1,1'-Di-N-氧化物 黄色素-37 麦斯明-D4 麦司明 麝香吡啶 鲁非罗尼 鲁卡他胺 高氯酸N-甲基甲基吡啶正离子 高氯酸,吡啶 高奎宁酸 马来酸溴苯那敏 马来酸氯苯那敏-D6 马来酸左氨氯地平 顺式-双(异硫氰基)(2,2'-联吡啶基-4,4'-二羧基)(4,4'-二-壬基-2'-联吡啶基)钌(II) 顺式-二氯二(4-氯吡啶)铂 顺式-二(2,2'-联吡啶)二氯铬氯化物 顺式-1-(4-甲氧基苄基)-3-羟基-5-(3-吡啶)-2-吡咯烷酮 顺-双(2,2-二吡啶)二氯化钌(II) 水合物 顺-双(2,2'-二吡啶基)二氯化钌(II)二水合物 顺-二氯二(吡啶)铂(II) 顺-二(2,2'-联吡啶)二氯化钌(II)二水合物 韦德伊斯试剂 非那吡啶 非洛地平杂质C 非洛地平 非戈替尼 非布索坦杂质66 非尼拉朵 非尼拉敏 雷索替丁 阿雷地平 阿瑞洛莫 阿扎那韦中间体 阿培利司N-6 阿伐曲波帕杂质40 间硝苯地平 间-硝苯地平 镉,二碘四(4-甲基吡啶)- 锌,二溴二[4-吡啶羧硫代酸(2-吡啶基亚甲基)酰肼]-