Selective Arylsulfonamide Inhibitors of ADAM-17: Hit Optimization and Activity in Ovarian Cancer Cell Models
摘要:
Activated leukocyte cell adhesion molecule (ALCAM) is expressed at the surface of epithelial ovarian cancer (EOC) cells and is released in a soluble form (sALCAM) by ADAM-17-mediated shedding. This process is relevant to EOC cell motility and invasiveness, which is reduced by inhibitors of ADAM-17. In addition, ADAM-17 plays a key role in EGFR signaling and thus may represent a useful target in anticancer therapy. Herein we report our hit optimization effort to identify potent and selective ADAM-17 inhibitors, starting with previously identified inhibitor 1. A new series of secondary sulfonamido-based hydroxamates was designed and synthesized. The biological activity of the newly synthesized compounds was tested in vitro on isolated enzymes and human EOC cell lines. The optimization process led to compound 21, which showed an IC50 of 1.9 nivi on ADAM-17 with greatly increased selectivity. This compound maintained good inhibitory properties on sALCAM shedding in several in vitro assays.
Selective Arylsulfonamide Inhibitors of ADAM-17: Hit Optimization and Activity in Ovarian Cancer Cell Models
摘要:
Activated leukocyte cell adhesion molecule (ALCAM) is expressed at the surface of epithelial ovarian cancer (EOC) cells and is released in a soluble form (sALCAM) by ADAM-17-mediated shedding. This process is relevant to EOC cell motility and invasiveness, which is reduced by inhibitors of ADAM-17. In addition, ADAM-17 plays a key role in EGFR signaling and thus may represent a useful target in anticancer therapy. Herein we report our hit optimization effort to identify potent and selective ADAM-17 inhibitors, starting with previously identified inhibitor 1. A new series of secondary sulfonamido-based hydroxamates was designed and synthesized. The biological activity of the newly synthesized compounds was tested in vitro on isolated enzymes and human EOC cell lines. The optimization process led to compound 21, which showed an IC50 of 1.9 nivi on ADAM-17 with greatly increased selectivity. This compound maintained good inhibitory properties on sALCAM shedding in several in vitro assays.
Efficient Route for the Preparation of Benzyloxy-Substituted Benzenesulfonyl Chlorides from Mercaptophenols
作者:Coline Jumeaux、David G. Cooper、Bruce T. Brown、Ian T. Forbes、Vincenzo Garzya
DOI:10.1080/00397911.2010.492461
日期:2011.5.4
[image omitted] A consistently high-yielding route has been developed for the preparation of benzyloxybenzenesulfonyl chlorides from mercaptophenols. This route allows rapid preparation of intermediates for array chemistry.
Selective Arylsulfonamide Inhibitors of ADAM-17: Hit Optimization and Activity in Ovarian Cancer Cell Models
Activated leukocyte cell adhesion molecule (ALCAM) is expressed at the surface of epithelial ovarian cancer (EOC) cells and is released in a soluble form (sALCAM) by ADAM-17-mediated shedding. This process is relevant to EOC cell motility and invasiveness, which is reduced by inhibitors of ADAM-17. In addition, ADAM-17 plays a key role in EGFR signaling and thus may represent a useful target in anticancer therapy. Herein we report our hit optimization effort to identify potent and selective ADAM-17 inhibitors, starting with previously identified inhibitor 1. A new series of secondary sulfonamido-based hydroxamates was designed and synthesized. The biological activity of the newly synthesized compounds was tested in vitro on isolated enzymes and human EOC cell lines. The optimization process led to compound 21, which showed an IC50 of 1.9 nivi on ADAM-17 with greatly increased selectivity. This compound maintained good inhibitory properties on sALCAM shedding in several in vitro assays.