摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

N-(2-硝基苯基)庚酰胺 | 560090-44-0

中文名称
N-(2-硝基苯基)庚酰胺
中文别名
——
英文名称
N-(2-nitrophenyl)heptanamide
英文别名
——
N-(2-硝基苯基)庚酰胺化学式
CAS
560090-44-0
化学式
C13H18N2O3
mdl
——
分子量
250.298
InChiKey
GTSRRWURRZTEDU-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.5
  • 重原子数:
    18
  • 可旋转键数:
    6
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.46
  • 拓扑面积:
    74.9
  • 氢给体数:
    1
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    N-(2-硝基苯基)庚酰胺 在 human butyrylcholinesterase EC 3.1.1.8 、 Tris buffer 作用下, 以 乙腈 为溶剂, 生成 2-硝基苯胺
    参考文献:
    名称:
    On the active site for hydrolysis of aryl amides and choline esters by human cholinesterases
    摘要:
    Cholinesterases, in addition to their well-known esterase action, also show an aryl acylamidase (AAA) activity whereby they catalyze the hydrolysis of amides of certain aromatic amines. The biological function of this catalysis is not known. Furthermore, it is not known whether the esterase catalytic site is involved in the AAA activity of cholinesterases. It has been speculated that the AAA activity, especially that of butyrylcholinesterase (BuChE), may be important in the development of the nervous system and in pathological processes such as formation of neuritic plaques in Alzheimer's disease (AD). The substrate generally used to study the AAA activity of cholinesterases is N-(2-nitrophenyl)acetamide. However, use of this substrate requires high concentrations of enzyme and substrate, and prolonged periods of incubation at elevated temperature. As a consequence, difficulties in performing kinetic analysis of AAA activity associated with cholinesterases have hampered understanding this activity. Because of its potential biological importance, we sought to develop a more efficient and specific substrate for use in studying the AAA activity associated with BuChE, and for exploring the catalytic site for this hydrolysis. Here, we describe the structure-activity relationships for hydrolysis of anilides by cholinesterases. These studies led to a substrate, N-(2-nitrophenyl)trifluoroacetamide, that was hydrolyzed several orders of magnitude faster than N-(2-nitrophenyl)acetamide by cholinesterases. Also, larger N-(2-nitrophenyl)alkylamides were found to be more rapidly hydrolyzed by BuChE than N-(2-nitrophenyl)acetamide and, in addition, were more specific for hydrolysis by BuChE. Thus, N-(2-nitrophenyl)alkylamides with six to eight carbon atoms in the acyl group represent suitable specific substrates to investigate further the function of the AAA activity of BuChE. Based on the substrate structure-activity relationships and kinetic studies, the hydrolysis of anilides and esters of choline appears to utilize the same catalytic site in BuChE. (c) 2006 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2006.02.021
  • 作为产物:
    描述:
    2-硝基乙酰苯胺 在 human butyrylcholinesterase EC 3.1.1.8 、 Tris buffer 、 三乙胺 作用下, 以 二氯甲烷乙腈 为溶剂, 生成 N-(2-硝基苯基)庚酰胺
    参考文献:
    名称:
    On the active site for hydrolysis of aryl amides and choline esters by human cholinesterases
    摘要:
    Cholinesterases, in addition to their well-known esterase action, also show an aryl acylamidase (AAA) activity whereby they catalyze the hydrolysis of amides of certain aromatic amines. The biological function of this catalysis is not known. Furthermore, it is not known whether the esterase catalytic site is involved in the AAA activity of cholinesterases. It has been speculated that the AAA activity, especially that of butyrylcholinesterase (BuChE), may be important in the development of the nervous system and in pathological processes such as formation of neuritic plaques in Alzheimer's disease (AD). The substrate generally used to study the AAA activity of cholinesterases is N-(2-nitrophenyl)acetamide. However, use of this substrate requires high concentrations of enzyme and substrate, and prolonged periods of incubation at elevated temperature. As a consequence, difficulties in performing kinetic analysis of AAA activity associated with cholinesterases have hampered understanding this activity. Because of its potential biological importance, we sought to develop a more efficient and specific substrate for use in studying the AAA activity associated with BuChE, and for exploring the catalytic site for this hydrolysis. Here, we describe the structure-activity relationships for hydrolysis of anilides by cholinesterases. These studies led to a substrate, N-(2-nitrophenyl)trifluoroacetamide, that was hydrolyzed several orders of magnitude faster than N-(2-nitrophenyl)acetamide by cholinesterases. Also, larger N-(2-nitrophenyl)alkylamides were found to be more rapidly hydrolyzed by BuChE than N-(2-nitrophenyl)acetamide and, in addition, were more specific for hydrolysis by BuChE. Thus, N-(2-nitrophenyl)alkylamides with six to eight carbon atoms in the acyl group represent suitable specific substrates to investigate further the function of the AAA activity of BuChE. Based on the substrate structure-activity relationships and kinetic studies, the hydrolysis of anilides and esters of choline appears to utilize the same catalytic site in BuChE. (c) 2006 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2006.02.021
点击查看最新优质反应信息

文献信息

  • On the active site for hydrolysis of aryl amides and choline esters by human cholinesterases
    作者:Sultan Darvesh、Robert S. McDonald、Katherine V. Darvesh、Diane Mataija、Sam Mothana、Holly Cook、Karina M. Carneiro、Nicole Richard、Ryan Walsh、Earl Martin
    DOI:10.1016/j.bmc.2006.02.021
    日期:2006.7
    Cholinesterases, in addition to their well-known esterase action, also show an aryl acylamidase (AAA) activity whereby they catalyze the hydrolysis of amides of certain aromatic amines. The biological function of this catalysis is not known. Furthermore, it is not known whether the esterase catalytic site is involved in the AAA activity of cholinesterases. It has been speculated that the AAA activity, especially that of butyrylcholinesterase (BuChE), may be important in the development of the nervous system and in pathological processes such as formation of neuritic plaques in Alzheimer's disease (AD). The substrate generally used to study the AAA activity of cholinesterases is N-(2-nitrophenyl)acetamide. However, use of this substrate requires high concentrations of enzyme and substrate, and prolonged periods of incubation at elevated temperature. As a consequence, difficulties in performing kinetic analysis of AAA activity associated with cholinesterases have hampered understanding this activity. Because of its potential biological importance, we sought to develop a more efficient and specific substrate for use in studying the AAA activity associated with BuChE, and for exploring the catalytic site for this hydrolysis. Here, we describe the structure-activity relationships for hydrolysis of anilides by cholinesterases. These studies led to a substrate, N-(2-nitrophenyl)trifluoroacetamide, that was hydrolyzed several orders of magnitude faster than N-(2-nitrophenyl)acetamide by cholinesterases. Also, larger N-(2-nitrophenyl)alkylamides were found to be more rapidly hydrolyzed by BuChE than N-(2-nitrophenyl)acetamide and, in addition, were more specific for hydrolysis by BuChE. Thus, N-(2-nitrophenyl)alkylamides with six to eight carbon atoms in the acyl group represent suitable specific substrates to investigate further the function of the AAA activity of BuChE. Based on the substrate structure-activity relationships and kinetic studies, the hydrolysis of anilides and esters of choline appears to utilize the same catalytic site in BuChE. (c) 2006 Elsevier Ltd. All rights reserved.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐